题目连接

http://poj.org/problem?id=2631

Roads in the North

Description

Building and maintaining roads among communities in the far North is an expensive business. With this in mind, the roads are build such that there is only one route from a village to a village that does not pass through some other village twice. 
Given is an area in the far North comprising a number of villages and roads among them such that any village can be reached by road from any other village. Your job is to find the road distance between the two most remote villages in the area.

The area has up to 10,000 villages connected by road segments. The villages are numbered from 1.

Input

Input to the problem is a sequence of lines, each containing three positive integers: the number of a village, the number of a different village, and the length of the road segment connecting the villages in kilometers. All road segments are two-way.

Output

You are to output a single integer: the road distance between the two most remote villages in the area.

Sample Input

5 1 6
1 4 5
6 3 9
2 6 8
6 1 7

Sample Output

22

树的直径。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
using std::map;
using std::min;
using std::sort;
using std::pair;
using std::queue;
using std::vector;
using std::multimap;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 11000;
const int INF = 0x3f3f3f3f;
struct edge { int to, w, next; }G[N << 1];
int tot, head[N], dist[N];
void init() {
tot = 0, cls(head, -1);
}
void add_edge(int u, int v, int w) {
G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
G[tot] = (edge){ u, w, head[v] }; head[v] = tot++;
}
int bfs(int u) {
queue<int> q;
q.push(u);
cls(dist, -1);
int id = 0, maxd = 0;
dist[u] = 0;
while(!q.empty()) {
u = q.front(); q.pop();
if(dist[u] > maxd) {
maxd = dist[id = u];
}
for(int i = head[u]; ~i; i = G[i].next) {
edge &e = G[i];
if(-1 == dist[e.to]) {
dist[e.to] = dist[u] + e.w;
q.push(e.to);
}
}
}
return id;
}
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
init();
int u, v, w;
while(~scanf("%d %d %d", &u, &v, &w)) {
add_edge(u, v, w);
}
printf("%d\n", dist[bfs(bfs(1))]);
return 0;
}

poj 2631 Roads in the North的更多相关文章

  1. POJ 2631 Roads in the North(树的直径)

    POJ 2631 Roads in the North(树的直径) http://poj.org/problem? id=2631 题意: 有一个树结构, 给你树的全部边(u,v,cost), 表示u ...

  2. poj 2631 Roads in the North【树的直径裸题】

    Roads in the North Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2359   Accepted: 115 ...

  3. poj 2631 Roads in the North (自由树的直径)

    Roads in the North Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4513   Accepted: 215 ...

  4. POJ 2631 Roads in the North(求树的直径,两次遍历 or 树DP)

    题目链接:http://poj.org/problem?id=2631 Description Building and maintaining roads among communities in ...

  5. 题解报告:poj 2631 Roads in the North(最长链)

    Description Building and maintaining roads among communities in the far North is an expensive busine ...

  6. POJ 2631 Roads in the North (求树的直径)

    Description Building and maintaining roads among communities in the far North is an expensive busine ...

  7. POJ 2631 Roads in the North (模板题)(树的直径)

    <题目链接> 题目大意:求一颗带权树上任意两点的最远路径长度. 解题分析: 裸的树的直径,可由树形DP和DFS.BFS求解,下面介绍的是BFS解法. 在树上跑两遍BFS即可,第一遍BFS以 ...

  8. POJ 2631 Roads in the North (树的直径)

    题意: 给定一棵树, 求树的直径. 分析: 两种方法: 1.两次bfs, 第一次求出最远的点, 第二次求该点的最远距离就是直径. 2.同hdu2196的第一次dfs, 求出每个节点到子树的最长距离和次 ...

  9. POJ [P2631] Roads in the North

    树的直径 树的直径求法: 任取一点u,找到树上距u最远的点s 找到树上距s点最远的点t,s->t的距离即为所求 #include <iostream> #include <cs ...

随机推荐

  1. Flex AdvancedDatagrid使用

    首先我先来看下利用Advanced Datagrid做出的效果,然后我们再对其中所利用的知识进行讲解,效果图如下: 我们来看下这个效果我们所用到的关于Advanced Datagrid的相关知识: 一 ...

  2. 普通session vs MemcachedSession vs RedisSession

    一.普通session(数据存储在内存中) #!/usr/bin/env python # -*- coding:utf-8 -*- from hashlib import sha1 import o ...

  3. java中反射

    Person.java===>>person.class ==>>jvm中的类加载器===>>class对象:代表内存中Person.class ==>> ...

  4. max subquence sum(n^2)

    #include<cstdio>#include<cstring>const int maxn=100005;int buf[maxn];int main(){ freopen ...

  5. vyatta的fork开源版本

    https://www.reddit.com/r/networking/comments/3dvwfy/who_here_is_using_vyos/ Vyatta came in two flavo ...

  6. WWF3XOML方式创建和启动工作流 <第十篇>

    一.XOML使用工作流的好处 通过Xoml方式使用工作流的好处在于,它能够不重新启动程序的情况下,仅仅通过配置xoml就能够实现改变工作流,非常灵活. 创建一个WinForm程序如下: 代码如下: n ...

  7. ArcGIS10.2最新全套下载地址

    http://www.tuicool.com/articles/VfaMfy 免责声明: 该链接来自于哥伦比亚大学或者牛津大学的网站链接, 下载 软件之前确保有正版的软件授权 ,本博客只是转载了网站链 ...

  8. VirtualBox是什么

    VirtualBox 是一款 x86 虚拟机软件.原由德国innotek公司开发,2008年Sun收购了Innotek,而Sun于2010年被Oracle收购,2010年1月21日改 名成 Oracl ...

  9. poj3274 哈希

    这题终于让我AC了,其过程之艰辛我不想再回忆了,看了各种代码,一定要注意指针空和非空的问题,再一个要注意边界. #include <stdio.h> #include <string ...

  10. 1.6Linux设备驱动

    1.设备驱动的作用: 计算机系统的运行是软硬件共同作用的结果.如果应用程序直接访问硬件,会造成应用程序与硬件耦合度过高(了解面向对象的读者会很容易想到,降低对象与对象之间的耦合度最有效的方法是通过接口 ...