# -*- coding: cp936 -*-
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x) # 训练数据点数目
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 2 * x + 5 + np.random.randn(m) # 两种终止条件
loop_max = 10000 # 最大迭代次数(防止死循环)
epsilon = 1e-3 # 初始化权值
np.random.seed(0)
w = np.random.randn(2)
#w = np.zeros(2) alpha = 0.001 # 步长(注意取值过大会导致振荡,过小收敛速度变慢)
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数
finish = 0 # 终止标志
# -------------------------------------------随机梯度下降算法----------------------------------------------------------
'''
while count < loop_max:
count += 1 # 遍历训练数据集,不断更新权值
for i in range(m):
diff = np.dot(w, input_data[i]) - target_data[i] # 训练集代入,计算误差值 # 采用随机梯度下降算法,更新一次权值只使用一组训练数据
w = w - alpha * diff * input_data[i] # ------------------------------终止条件判断-----------------------------------------
# 若没终止,则继续读取样本进行处理,如果所有样本都读取完毕了,则循环重新从头开始读取样本进行处理。 # ----------------------------------终止条件判断-----------------------------------------
# 注意:有多种迭代终止条件,和判断语句的位置。终止判断可以放在权值向量更新一次后,也可以放在更新m次后。
if np.linalg.norm(w - error) < epsilon: # 终止条件:前后两次计算出的权向量的绝对误差充分小
finish = 1
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])
''' # -----------------------------------------------梯度下降法-----------------------------------------------------------
while count < loop_max:
count += 1 # 标准梯度下降是在权值更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个训练样例来更新的
# 在标准梯度下降中,权值更新的每一步对多个样例求和,需要更多的计算
sum_m = np.zeros(2)
for i in range(m):
dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i]
sum_m = sum_m + dif # 当alpha取值过大时,sum_m会在迭代过程中会溢出 w = w - alpha * sum_m # 注意步长alpha的取值,过大会导致振荡
#w = w - 0.005 * sum_m # alpha取0.005时产生振荡,需要将alpha调小 # 判断是否已收敛
if np.linalg.norm(w - error) < epsilon:
finish = 1
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1]) # check with scipy linear regression
slope, intercept, r_value, p_value, slope_std_error = stats.linregress(x, target_data)
print 'intercept = %s slope = %s' %(intercept, slope) plt.plot(x, target_data, 'k+')
plt.plot(x, w[1] * x + w[0], 'r')
plt.show()

The Learning Rate

An important consideration is the learning rate µ, which determines by how much we change the weights w at each step. If µ is too small, the algorithm will take a long time to converge .

Conversely, if µ is too large, we may end up bouncing around the error surface out of control - the algorithm diverges. This usually ends with an overflow error in the computer's floating-point arithmetic.

Batch vs. Online Learning

Above we have accumulated the gradient contributions for all data points in the training set before updating the weights. This method is often referred to as batch learning. An alternative approach is online learning, where the weights are updated immediately after seeing each data point. Since the gradient for a single data point can be considered a noisy approximation to the overall gradient, this is also called stochastic gradient descent.

Online learning has a number of advantages:

  • it is often much faster, especially when the training set is redundant (contains many similar data points),
  • it can be used when there is no fixed training set (new data keeps coming in),
  • it is better at tracking nonstationary environments (where the best model gradually changes over time),
  • the noise in the gradient can help to escape from local minima (which are a problem for gradient descent in nonlinear models)

These advantages are, however, bought at a price: many powerful optimization techniques (such as: conjugate and second-order gradient methods, support vector machines, Bayesian methods, etc.)  are batch methods that cannot be used online.A compromise between batch and online learning is the use of "mini-batches": the weights are updated after every n data points, where n is greater than 1 but smaller than the training set size.

参考:http://www.tuicool.com/articles/MRbee2i

https://www.willamette.edu/~gorr/classes/cs449/linear2.html

http://www.bogotobogo.com/python/python_numpy_batch_gradient_descent_algorithm.php

梯度下降法VS随机梯度下降法 (Python的实现)的更多相关文章

  1. 对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)

    本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin ...

  2. 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

    本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...

  3. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  4. 机器学习(ML)十五之梯度下降和随机梯度下降

    梯度下降和随机梯度下降 梯度下降在深度学习中很少被直接使用,但理解梯度的意义以及沿着梯度反方向更新自变量可能降低目标函数值的原因是学习后续优化算法的基础.随后,将引出随机梯度下降(stochastic ...

  5. 线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++

    We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Beca ...

  6. online learning,batch learning&批量梯度下降,随机梯度下降

    以上几个概念之前没有完全弄清其含义及区别,容易混淆概念,在本文浅析一下: 一.online learning vs batch learning online learning强调的是学习是实时的,流 ...

  7. 梯度下降之随机梯度下降 -minibatch 与并行化方法

    问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S={x(i),y(i)},通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本(x(i),y ...

  8. 梯度下降VS随机梯度下降

    样本个数m,x为n维向量.h_theta(x) = theta^t * x梯度下降需要把m个样本全部带入计算,迭代一次计算量为m*n^2 随机梯度下降每次只使用一个样本,迭代一次计算量为n^2,当m很 ...

  9. 梯度下降、随机梯度下降、方差减小的梯度下降(matlab实现)

    梯度下降代码: function [ theta, J_history ] = GradinentDecent( X, y, theta, alpha, num_iter ) m = length(y ...

随机推荐

  1. 【转】SQL Server T-SQL高级查询

    SQL Server T-SQL高级查询 高级查询在数据库中用得是最频繁的,也是应用最广泛的. Ø 基本常用查询 --select select * from student; //查询student ...

  2. netsh修改IP及DNS

    netsh interface ip show addresses  显示当前IP netsh interface ip show dns           显示当前DNS netsh interf ...

  3. 【secureCRT】会话保存的路径

  4. 为博客启用MetaWeBlog API

    最近想写一个博客系统,主要有以下几点功能. 能够使用Live Writer来发布.修改文章 使用MongoDB作为持久化 对于博客中的图片.CSS.JS文件,使用CDN加速 后期可加上Radis 使用 ...

  5. DBLINK的session无法关闭,报异常!

    ------解决方法-------------------------------------------------------- --ALTER SESSION alter session clo ...

  6. iOS开发- 蓝牙后台接收数据(BLE4.0)

    最近在做一个蓝牙相关的项目, 需要在应用进入后台, 或者手机属于锁屏状态的情况下, 仍然保持蓝牙连接, 并且能正常接收数据. 本来以后会很麻烦, 但是学习了下..发现就2步而已.简单的不能再简单了. ...

  7. oracle 树状查询

    做树状查询的时候,oracle有自己的优势,一条sql语句就可以搞定,而mysql这种数据库就只能用递归了... 递归的项目实例: //递归取到栏目路径 public List getTreeList ...

  8. 【转】Tomcat中部署java web应用程序

    http://www.blogjava.net/jiafang83/archive/2009/06/02/279644.html 转载:今天给大家介绍怎样在Tomcat5.5.9中部署Java Web ...

  9. Unity-Animato深入系列---FloatValue阻尼

    回到 Animator深入系列总目录 Animator的SetFloat接口可以设置阻尼,并且4种类型变量只有float是支持阻尼的. public void SetFloat(int id, flo ...

  10. 算法大全(c,c++)

    http://www.2cto.com/kf/201109/105758.html 算法大全(C,C++)一. 数论算法 1.求两数的最大公约数function gcd(a,b:integer):in ...