[偏微分方程教程习题参考解答]4.1Duhamel 原理
1. 如果已知下述常微分方程的特定初值问题 $$\bex \sedd{\ba{ll} -y''+y=0,&x>0,\\ y(0)=0,\quad y'(0)=1 \ea} \eex$$ 的解为 $y=Y(x)$, 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} -y''+y=f(x),&x>0,\\ y(0)=a,\quad y'(0)=b \ea} \eex$$ 的解的表达式.
解答: $$\bex aY'(x)+b Y(x)-\int_0^x f(t)Y(x-t)\rd t. \eex$$
2. 如果已知以下初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=0,&x>0,\\ y(0)=y'(0)=\cdots=y^{(k-2)}(0)=0, y^{(k-1)}(0)=1,&k\geq 2 \ea} \eex$$ 的解为 $y=Y(x)$, 其中 $a_1,\cdots,a_k$ 皆为常数. 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=f(x),&x>0,\\ y(0)=\al_0, \cdots, y^{(k-1)}(0)=\al_{k-1} \ea} \eex$$ 的解的表达式.
解答: $$\bex \sum_{i=0}^{k-1} \al_iY^{(k-1-i)}(x)+\int_0^x f(t)Y(x-t)\rd t. \eex$$
3. 证明定理 4.2.
证明: 显然, $$\bex v_2(0,t)=v_2(l,t)=0,\quad v_2(x,0)=0. \eex$$ 另外, 也有 $$\beex \bea \frac{\p v_2}{\p t} &= w(x,t,t)+\int_0^t \frac{\p}{\p t}w(t,x,\tau)\rd \tau =\int_0^t \frac{\p }{\p t}w(t,x\tau)\rd \tau\ra \frac{\p v_2}{\p t}(x,0)=0,\\ \frac{\p^2v_2}{\p t^2} &=\frac{\p w}{\p t}(x,t,t) +\int_0^t \frac{\p^2}{\p t^2}w(x,t,\tau)\rd\tau\\ &=f_1(x,t)+\int_0^t a^2\frac{\p^2}{\p x^2}w(x,t,\tau)\rd \tau\\ &=f_1(x,t)+a^2\frac{\p^2v_2}{\p x^2}. \eea \eeex$$
4. 找出函数变换将下面的边界条件齐次化:
(1). $u_x(0,t)=\mu_1(t),\ u(l,t)=\mu_2(t)$.
(2). $u(0,t)=\mu_1(t),\ u_x(l,t)=\mu_2(t)$.
解答:
(1). $$\bex U(x)=u(x)-[(x-l)\mu_1(t)+\mu_2(t)]. \eex$$
(2). $$\bex U(x)=u(x)-[\mu_1(t)+x\mu_2(t)]. \eex$$
[偏微分方程教程习题参考解答]4.1Duhamel 原理的更多相关文章
- [PeterDLax著泛函分析习题参考解答]第2章 线性映射
1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...
- [PeterDLax著泛函分析习题参考解答]第1章 线性空间
1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间
1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...
- [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间
1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...
随机推荐
- mq_notify
NAME mq_notify - 通知进程可以接收一条消息 (REALTIME) SYNOPSIS #include <mqueue.h> int mq_notify(mqd_t mqde ...
- IIS7 ASP.NET 未被授权访问所请求的资源
IIS7 ASP.NET 未被授权访问所请求的资源 ASP.NET 未被授权访问所请求的资源.请考虑授予 ASP.NET 请求标识访问此资源的权限. ASP.NET 有一个在应用程序没有模拟时使用的基 ...
- iOS开发--storyboard适配pin
- eclipse 代码格式化 行宽设置
windows--preferences--java--code style--formatter--edit--line wrapping--maximum line width
- Java-马士兵设计模式学习笔记-责任链模式-模拟处理Reques Response
一.目标 1.用Filter模拟处理Request.Response 2.思路细节技巧: (1)Filter的doFilter方法改为doFilter(Request,Resopnse,FilterC ...
- 图解TCP/IP读书笔记(一)
图解TCP/IP读书笔记(一) 第一章 网络基础知识 本学期的信安概论课程中有大量的网络知识,其中TCP/IP占了相当大的比重,让我对上学期没有好好学习计算机网络这门课程深感后悔.在老师的推荐下开始阅 ...
- 在CentOS下面编译WizNote Qt Project
编译环境 CentOS 64位 Desktop 版本:6.5 编译前的准备: CentOS的用户默认没有root权限,如果当前用户没有权限root,则可以在终端里面执行下面的命令: su root s ...
- URAL 1233 Amusing Numbers 好题
参照了nocow上的解法,照搬过来…… 易知一个数X在数列中在另一个数Y前,当且仅当X前缀小于Y或前缀相等X短,那么我们分布考虑,比如对于数48561: 5位上:10000~48560; 4位上:10 ...
- flex 生命周期 ibm引用
Flex 本质 提起 Flex 我们不得不追述其发展历史以及两个很重要的名词或者说技术,那就是 Flash 和 Flash Player.Flash 是 Adobe 推出的基于时间轴的交互式矢量图和 ...
- Android--数据持久化之内部存储、Sdcard存储
前言 之前一直在讲AndroidUI的内容,但是还没有完结,之后会慢慢补充.今天讲讲其他的,关于数据持久化的内容.对于一个应用程序而言,不可避免的要能够对数据进行存储,Android程序也不例外.而在 ...