[偏微分方程教程习题参考解答]4.1Duhamel 原理
1. 如果已知下述常微分方程的特定初值问题 $$\bex \sedd{\ba{ll} -y''+y=0,&x>0,\\ y(0)=0,\quad y'(0)=1 \ea} \eex$$ 的解为 $y=Y(x)$, 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} -y''+y=f(x),&x>0,\\ y(0)=a,\quad y'(0)=b \ea} \eex$$ 的解的表达式.
解答: $$\bex aY'(x)+b Y(x)-\int_0^x f(t)Y(x-t)\rd t. \eex$$
2. 如果已知以下初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=0,&x>0,\\ y(0)=y'(0)=\cdots=y^{(k-2)}(0)=0, y^{(k-1)}(0)=1,&k\geq 2 \ea} \eex$$ 的解为 $y=Y(x)$, 其中 $a_1,\cdots,a_k$ 皆为常数. 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=f(x),&x>0,\\ y(0)=\al_0, \cdots, y^{(k-1)}(0)=\al_{k-1} \ea} \eex$$ 的解的表达式.
解答: $$\bex \sum_{i=0}^{k-1} \al_iY^{(k-1-i)}(x)+\int_0^x f(t)Y(x-t)\rd t. \eex$$
3. 证明定理 4.2.
证明: 显然, $$\bex v_2(0,t)=v_2(l,t)=0,\quad v_2(x,0)=0. \eex$$ 另外, 也有 $$\beex \bea \frac{\p v_2}{\p t} &= w(x,t,t)+\int_0^t \frac{\p}{\p t}w(t,x,\tau)\rd \tau =\int_0^t \frac{\p }{\p t}w(t,x\tau)\rd \tau\ra \frac{\p v_2}{\p t}(x,0)=0,\\ \frac{\p^2v_2}{\p t^2} &=\frac{\p w}{\p t}(x,t,t) +\int_0^t \frac{\p^2}{\p t^2}w(x,t,\tau)\rd\tau\\ &=f_1(x,t)+\int_0^t a^2\frac{\p^2}{\p x^2}w(x,t,\tau)\rd \tau\\ &=f_1(x,t)+a^2\frac{\p^2v_2}{\p x^2}. \eea \eeex$$
4. 找出函数变换将下面的边界条件齐次化:
(1). $u_x(0,t)=\mu_1(t),\ u(l,t)=\mu_2(t)$.
(2). $u(0,t)=\mu_1(t),\ u_x(l,t)=\mu_2(t)$.
解答:
(1). $$\bex U(x)=u(x)-[(x-l)\mu_1(t)+\mu_2(t)]. \eex$$
(2). $$\bex U(x)=u(x)-[\mu_1(t)+x\mu_2(t)]. \eex$$
[偏微分方程教程习题参考解答]4.1Duhamel 原理的更多相关文章
- [PeterDLax著泛函分析习题参考解答]第2章 线性映射
1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...
- [PeterDLax著泛函分析习题参考解答]第1章 线性空间
1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间
1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...
- [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间
1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...
随机推荐
- hive0.13网络接口安装
安装好hive 0.13以后,在./lib下找不到hive-hwi-0.13.1.war ,那该怎么办? 1.下载hive-0.12.0版本,把这一版里面的hive-hwi-0.12.0.war重 ...
- ElasticSearch安装部署
官网:http://www.elasticsearch.org ElasticSearch is an open-source and distributed search engine which ...
- PHP 练习租房
练习:租房子 <body> <form action="test.php" method="post"> <div>区域: ...
- 关于 PHP 7 你必须知道的五件事
1.今年的计划表已出.PHP 7 时间表 RFC 投票一直通过, PHP 7 将在2015年10月发布.尽管有些延迟,但我们还是很高兴它在今年内发布.PHP 7 详细时间表由此查看. 2.PHP 要上 ...
- 创建git标签【转】
转自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/00137695175857 ...
- django中的filter详解
filter (数据过滤) 我们很少会一次性从数据库中取出所有的数据:通常都只针对一部分数据进行操作. 在Django API中,我们可以使用`` filter()`` 方法对数据进行过滤: > ...
- grunt <% %>模板和使用配置文件
使用<% %>分隔符指定的模板会在任务从它们的配置中读取相应的数据时将自动扩展扫描.模板会被递归的展开,直到配置中不再存在遗留的模板相关的信息(与模板匹配的). 整个配置对象 ...
- 日期选择插件clndr的使用
需求是:在HTML中绘制日历直接供用户选择 而不是使用datepicker之类的表单插件让用户点击input后弹出datepicker让用户选择 浏览了一些解决方案后,发现 CLNDR 这个jQue ...
- android 安装 出现Android Native Development Tools不能安装
Software being installed: Android Native Development Tools 20.0.0.v201206242043-391819 (com.android. ...
- R语言实战读书笔记(五)高级数据管理
5.2.1 数据函数 abs: sqrt: ceiling:求不小于x的最小整数 floor:求不大于x的最大整数 trunc:向0的方向截取x中的整数部分 round:将x舍入为指定位的小数 sig ...