1. 如果已知下述常微分方程的特定初值问题 $$\bex \sedd{\ba{ll} -y''+y=0,&x>0,\\ y(0)=0,\quad y'(0)=1 \ea} \eex$$ 的解为 $y=Y(x)$, 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} -y''+y=f(x),&x>0,\\ y(0)=a,\quad y'(0)=b \ea} \eex$$ 的解的表达式.

解答: $$\bex aY'(x)+b Y(x)-\int_0^x f(t)Y(x-t)\rd t. \eex$$

2. 如果已知以下初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=0,&x>0,\\ y(0)=y'(0)=\cdots=y^{(k-2)}(0)=0, y^{(k-1)}(0)=1,&k\geq 2 \ea} \eex$$ 的解为 $y=Y(x)$, 其中 $a_1,\cdots,a_k$ 皆为常数. 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=f(x),&x>0,\\ y(0)=\al_0, \cdots, y^{(k-1)}(0)=\al_{k-1} \ea} \eex$$ 的解的表达式.

解答: $$\bex \sum_{i=0}^{k-1} \al_iY^{(k-1-i)}(x)+\int_0^x f(t)Y(x-t)\rd t. \eex$$

3. 证明定理 4.2.

证明: 显然, $$\bex v_2(0,t)=v_2(l,t)=0,\quad v_2(x,0)=0. \eex$$ 另外, 也有 $$\beex \bea \frac{\p v_2}{\p t} &= w(x,t,t)+\int_0^t \frac{\p}{\p t}w(t,x,\tau)\rd \tau =\int_0^t \frac{\p }{\p t}w(t,x\tau)\rd \tau\ra \frac{\p v_2}{\p t}(x,0)=0,\\ \frac{\p^2v_2}{\p t^2} &=\frac{\p w}{\p t}(x,t,t) +\int_0^t \frac{\p^2}{\p t^2}w(x,t,\tau)\rd\tau\\ &=f_1(x,t)+\int_0^t a^2\frac{\p^2}{\p x^2}w(x,t,\tau)\rd \tau\\ &=f_1(x,t)+a^2\frac{\p^2v_2}{\p x^2}. \eea \eeex$$

4. 找出函数变换将下面的边界条件齐次化:

(1). $u_x(0,t)=\mu_1(t),\ u(l,t)=\mu_2(t)$.

(2). $u(0,t)=\mu_1(t),\ u_x(l,t)=\mu_2(t)$.

解答:

(1). $$\bex U(x)=u(x)-[(x-l)\mu_1(t)+\mu_2(t)]. \eex$$

(2). $$\bex U(x)=u(x)-[\mu_1(t)+x\mu_2(t)]. \eex$$

[偏微分方程教程习题参考解答]4.1Duhamel 原理的更多相关文章

  1. [PeterDLax著泛函分析习题参考解答]第2章 线性映射

    1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...

  2. [PeterDLax著泛函分析习题参考解答]第1章 线性空间

    1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...

  3. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  4. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  5. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  6. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  7. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  8. [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间

    1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...

  9. [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间

    1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...

随机推荐

  1. iOS开发--项目内存优化

    在用非ARC模式编写iOS程序的时候,造成程序内存泄露在所难免,后期我们一般会进行内存优化.自己比较常用的内存优化方法有两种 1.Analyze,静态分析内存泄露的方法.很简单,在Xcode菜单栏中点 ...

  2. PHP 简介

    lamp LAMP - Linux Apache MySQL PHP MySQL - 三个层次:文件层次,服务层次,界面层次. LAMP-Linux Apache MySQL PHP 本机 :127. ...

  3. marquee 笔记

    页面的自动滚动效果,可由javascript来实现, 但是有一个html标签 - <marquee></marquee>可以实现多种滚动效果,无需js控制. 使用marquee ...

  4. redis 2.4异常

    最近公司redis服务出现了异常,记录下教训: redis异常后:观察redis服务,可以看到redis cpu占用100% 用strace命令查看redis进程,显示如下: open("/ ...

  5. Java-HTTP连接时如何使用代理(一)—— System.Property方式

    在发起HTTP请求(openConnection() 或者 openStream())之前,加上以下2行代码: System.setProperty("proxyHost", PR ...

  6. php去除数组中重复数据

    <?php /** * 去除数组中重复数据 * by www.jbxue.com **/ $input = array("a" => "green" ...

  7. 9.cadence.封装1[原创]

    一.封装中几个重要的概念 软件如下: ①.Regular pad(正规焊盘) 用在:top layer,bottom layer,internal layer(信号层) ②.thermal relie ...

  8. MVC列表页通过CheckBox进行批量选择删除

    1.Html代码,将所有CheckBox包含于删除表单,并且所有列表项的CheckBox使用相同的Name,并且Value设置为数据项主键ID @using (Html.BeginForm(" ...

  9. BZOJ 2752 高速公路(road)(线段树)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2752 题意:给出一个数列A,维护两种操作: (1)将区间[L,R]之内的所有数字增加de ...

  10. wget 批量下载目录文件

    wget -r -p -k -np http://源目录     ./本地目标目录