1. 如果已知下述常微分方程的特定初值问题 $$\bex \sedd{\ba{ll} -y''+y=0,&x>0,\\ y(0)=0,\quad y'(0)=1 \ea} \eex$$ 的解为 $y=Y(x)$, 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} -y''+y=f(x),&x>0,\\ y(0)=a,\quad y'(0)=b \ea} \eex$$ 的解的表达式.

解答: $$\bex aY'(x)+b Y(x)-\int_0^x f(t)Y(x-t)\rd t. \eex$$

2. 如果已知以下初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=0,&x>0,\\ y(0)=y'(0)=\cdots=y^{(k-2)}(0)=0, y^{(k-1)}(0)=1,&k\geq 2 \ea} \eex$$ 的解为 $y=Y(x)$, 其中 $a_1,\cdots,a_k$ 皆为常数. 试通过它写出一般初值问题 $$\bex \sedd{\ba{ll} y^{(k)}+a_1y^{(k-1)}+\cdots+a_ky=f(x),&x>0,\\ y(0)=\al_0, \cdots, y^{(k-1)}(0)=\al_{k-1} \ea} \eex$$ 的解的表达式.

解答: $$\bex \sum_{i=0}^{k-1} \al_iY^{(k-1-i)}(x)+\int_0^x f(t)Y(x-t)\rd t. \eex$$

3. 证明定理 4.2.

证明: 显然, $$\bex v_2(0,t)=v_2(l,t)=0,\quad v_2(x,0)=0. \eex$$ 另外, 也有 $$\beex \bea \frac{\p v_2}{\p t} &= w(x,t,t)+\int_0^t \frac{\p}{\p t}w(t,x,\tau)\rd \tau =\int_0^t \frac{\p }{\p t}w(t,x\tau)\rd \tau\ra \frac{\p v_2}{\p t}(x,0)=0,\\ \frac{\p^2v_2}{\p t^2} &=\frac{\p w}{\p t}(x,t,t) +\int_0^t \frac{\p^2}{\p t^2}w(x,t,\tau)\rd\tau\\ &=f_1(x,t)+\int_0^t a^2\frac{\p^2}{\p x^2}w(x,t,\tau)\rd \tau\\ &=f_1(x,t)+a^2\frac{\p^2v_2}{\p x^2}. \eea \eeex$$

4. 找出函数变换将下面的边界条件齐次化:

(1). $u_x(0,t)=\mu_1(t),\ u(l,t)=\mu_2(t)$.

(2). $u(0,t)=\mu_1(t),\ u_x(l,t)=\mu_2(t)$.

解答:

(1). $$\bex U(x)=u(x)-[(x-l)\mu_1(t)+\mu_2(t)]. \eex$$

(2). $$\bex U(x)=u(x)-[\mu_1(t)+x\mu_2(t)]. \eex$$

[偏微分方程教程习题参考解答]4.1Duhamel 原理的更多相关文章

  1. [PeterDLax著泛函分析习题参考解答]第2章 线性映射

    1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...

  2. [PeterDLax著泛函分析习题参考解答]第1章 线性空间

    1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...

  3. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  4. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  5. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  6. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  7. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  8. [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间

    1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...

  9. [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间

    1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...

随机推荐

  1. sip比较好的博客

    http://blog.sina.com.cn/s/articlelist_1796220243_1_1.html

  2. java post 请求

    新公司的分词为post调用方式,以前还没用过post,这次上网查了下,比较简单,但还是写篇博客记录下,代码为网上找的,非原创. package com.chuntent.tool; import ja ...

  3. Open_Newtonsoft_Json 的序列化和反序列化

    Newtonsoft.Json,一款.NET中开源的Json序列化和反序列化类库(下载地址http://json.codeplex.com/). 特别注明:本人转自 陈 晨 博客园的 Newtonso ...

  4. DbProviderFactories.GetFactoryClasses

    using System.Data.Common; private void Method1() { DataTable table = DbProviderFactories.GetFactoryC ...

  5. Effective STL 中文版(大全)

    Effective STL 中文版(大全) 作者:winter 候捷说,对于STL,程序员有三个境界,开始是使用STL,然后是理解STL,最后是补充STL.Effective STL是一本非常好的书, ...

  6. Linux 下安装python软件包(pip、nose、virtualenv、distribute )

    新手刚开始学习Python,目前学习<笨方法学python>ing- 在学习习题46时需要安装几个软件包:pip.nose.virtualenv.distribute !在此记录Linux ...

  7. win7 64位系统 Oracle32bit + PL/SQL访问Orale服务,Oracle 11g的安装,中文乱码问题的解决

    前几天装了个Oracle32bit客户端 + PL/SQL连接不上oracle,我安装完打开PL/SQL登录界面跟正常的界面不一样,没有那个连接为Normal.SYSDBA的选项,下面有解释,至于我为 ...

  8. JS Scoping and Hoisting

    参考了这篇文章 http://www.jb51.net/article/30719.htm var v='Hello World'; (function(){ console.log(v); })() ...

  9. POJ 2689

    题意:求[l, r]区间中的间隔距离最大与最小的相邻两个素数,r<2200000000, r-l<10^6 题解: 对于<a的合数,其必然存在一个素因子b<=sqrt(a). ...

  10. Debian字符模式下修改显示分辨率

    Debian字符模式下修改显示分辨率 一.准备工具 a) Git apt-get install git 二.获取屏幕修改辅助软件 a) 创建临时文件 mkdir /tmp/screenModify ...