HDU 4686 矩阵快速幂 Arc of Dream
由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by;
a[i]*b[i] = ax*bx*a[i-1]*b[i-1] + ax*by*a[i-1] + bx*ay*b[i-1]+ay*by;
s[i] = s[i-1] + a[i-1]*b[i-1];
由此得到递推式 :设矩阵A=
ax | 0 | 0 | 0 | ay |
0 | bx | 0 | 0 | by |
ax*by | bx*ay | ax*bx | 0 | ay*by |
0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
矩阵B[i]=(a[i-1],b[i-1],a[i-1]*b[i-1],s[i-1],1)' (转置),B[i] =(a[i],b[i],a[i]*b[i],s[i],1)' (转置),则有B[i] = A*B[i-1]
令s0 = 0,则有B[0] = (a0,b0,a0*b0,s0,1)',B[n] = A^n*B[0],矩阵乘法是服从结合律的,所以先用矩阵快速幂算出A^n,再算出B[n],那么B[n][4]即为所求。
贴代码:
#include<cstdio>
#include<cstring>
typedef long long int ll;
const int p = ;
ll ax,ay,bx,by,a0,b0;
struct matrix
{
ll m[][];
} A;
inline void init()
{
memset(A.m,,sizeof(A.m));
A.m[][] =ax;
A.m[][] = ay;
A.m[][] = bx;
A.m[][] = by;
A.m[][] = ax*by%p;
A.m[][] = ay*bx%p;
A.m[][] = ax*bx%p;
A.m[][] = ay*by%p;
A.m[][] = A.m[][] = A.m[][] = ;
}
inline matrix mul(ll a[][],ll b[][])
{
matrix ans;
memset(ans.m,,sizeof(ans.m));
for(int i=; i<=; ++i)
for(int j=; j<=; ++j)
for(int k=; k<=; ++k)
ans.m[i][j] = (ans.m[i][j] + a[i][k]*b[k][j]%p)%p;
return ans;
}
inline matrix qPow(ll x)
{
matrix ans;
memset(ans.m,,sizeof(ans.m));
for(int i=; i<=; ++i)
ans.m[i][i] =;
init();
while(x)
{
if(x&) ans = mul(ans.m,A.m);
A = mul(A.m,A.m);
x >>= ;
}
return ans;
}
int main()
{
// freopen("in.txt","r",stdin);
ll n;
while(~scanf("%I64d",&n))
{
scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&a0,&ax,&ay,&b0,&bx,&by);
matrix ans = qPow(n);
ll res=;
res = (res + ans.m[][]*a0%p)%p;
res = (res + ans.m[][]*b0%p)%p;
res = (res + ans.m[][]*((a0*b0)%p)%p)%p;
res = (res + ans.m[][])%p;
printf("%I64d\n",res);
}
return ;
}
HDU 4686 矩阵快速幂 Arc of Dream的更多相关文章
- HDU 2855 (矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...
- HDU 4471 矩阵快速幂 Homework
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...
- HDU - 1575——矩阵快速幂问题
HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...
- hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...
- 随手练——HDU 5015 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...
- HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...
- How many ways?? HDU - 2157 矩阵快速幂
题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...
- HDU 5950 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 1757 矩阵快速幂 **
一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...
随机推荐
- IBatis.Net系列-多参数的SQL语句的配置
我们在使用IBatis.net操作数据的时候,肯定会碰到SQL参数当我们有一个参数时,IBatis的xml映射文件如下: <statement id="getProduct" ...
- MongoDB常用操作一查询find方法db.collection_name.find()
来:http://blog.csdn.net/wangli61289/article/details/40623097 https://docs.mongodb.org/manual/referenc ...
- LightOJ 1047-Program C
Description The people of Mohammadpur have decided to paint each of their houses red, green, or blue ...
- java.io.IOException: open failed: EACCES (Permission denied)问题解决
1. 问题描述:在Android中,用程序访问Sdcard时,有时出现“java.io.IOException: open failed: EACCES (Permission denied)&qu ...
- vue js 用nodejs的依赖包 --2016-08-23
今天被nodejs包依赖坑了一下,上次上传的项目突然运行不起来了,原来是package.json中定义了使用最新版本的依赖,而最新版本有可能调整了结构或者改了api,比如vux把flexbox-it ...
- MATLAB图像处理函数汇总(二)
60.imnoise 功能:增加图像的渲染效果. 语法: J = imnoise(I,type) J = imnoise(I,type,parameters) 举例 I = imread('eight ...
- git——学习笔记(三)分支管理
一.创建.合并分支 每次提交,git都往后走一格,串成一跳时间线,head指向的是分支,分支指向提交.master是主分支,dev是另一条分支,分支就像指针一样,合并.删除分支时,修改的都是指针,工作 ...
- 微软TechEd2013大会门票热卖!
微软TechEd2013大会将在北京.上海两地隆重举行! 会议时间安排如下: 北京:12月5日—6日 国家会议中心 上海:12月11日—12日 国际会议中心 现在是门票热卖时期,票价:2688.0 ...
- Ogre中OctreeSceneManager
转自:http://blog.csdn.net/yanonsoftware/article/details/1067265 既然前面分析Mesh(Entity,SceneNode)的渲染时已经看到了O ...
- 巧用nginx屏蔽对用户不可见的文件
事情的起因是这样的--前端的项目中有一些.less之类的源文件,而为了方便迭代更新发布,直接就把整个工程放到了www目录下. 这样虽然方便了,但是会带来一些安全隐患——用户可以访问/盗取这些源文件. ...