HDU3930 (原根)
给定方程 X^A = B (mol C) ,求 在[0,C) 中所有的解 , 并且C为质数。
设 rt 为 C 的原根 , 则 X = rt^x (这里相当于求 A^x =B (mol C) 用大步小步算法即可)
那么 ( rt^x ) ^ A = b (mol C)
rt^Ax = b (mol C)
由费马小定理, 设 Ax = (C-1)*y +t1 ---------------- ( * )
可得 rt^t1 =b ( mod C)
这里运用大步小步算法可以计算出 t1 。
得到 t1 后反代会 (*)式 , 利用扩展欧几里得求出符合条件的x解。
由于此方程相当于解 Ax mod (C-1) = t1 , 共用 gcd ( a , C-1 ) 组解。
最后用快速幂计算出所有的X解即可。
const maxn=;
maxh=;
var a,b,c,rt,t1,t2,x,y,d:int64;
i:longint;
ans,pm,pri:array[..maxn*] of int64;
pd:array[..maxn*] of boolean;
cnt,nm:longint;
h:array[..maxh,..] of int64;
procedure init;
var i,j:longint;
begin
fillchar(pd,sizeof(pd),false);
i:=; nm:=;
while i<=maxn do
begin
inc(nm);
pm[nm]:=i;
j:=i;
while j<=maxn do
begin
pd[j]:=true;
j:=j+i;
end;
while pd[i] do inc(i);
end;
end;
function pow(x,y,p:int64):int64;
var sum:int64;
begin
x:=x mod p;
sum:=;
while y> do
begin
if y and = then sum:=sum*x mod p;
x:=x*x mod p;
y:=y >> ;
end;
exit(sum);
end;
procedure divide(n:int64);
var i:longint;
begin
cnt:=;
i:=;
while pm[i]*pm[i]<=n do
begin
if n mod pm[i]= then
begin
inc(cnt);
pri[cnt]:=pm[i];
while n mod pm[i]= do n:=n div pm[i];
end;
inc(i);
end;
if n> then
begin
inc(cnt);
pri[cnt]:=n;
end;
end;
function findrt(p:int64):int64;
var g,t:int64;
flag:boolean;
begin
divide(p-);
g:=;
while true do
begin
flag:=true;
for i:= to cnt do
begin
t:=(p-) div pri[i];
if pow(g,t,p)= then
begin
flag:=false;
break;
end;
end;
if flag then exit(g);
inc(g);
end;
end;
procedure insert(x,y:int64); inline;
var hash:int64;
begin
hash:=x mod maxh;
while (h[hash,]<>x) and (h[hash,]<>) do hash:=(hash+) mod maxh;
h[hash,]:=x;
h[hash,]:=y;
end;
function find(x:int64):int64; inline;
var hash:int64;
begin
hash:=x mod maxh;
while (h[hash,]<>x) and (h[hash,]<>) do hash:=(hash+) mod maxh;
if h[hash,]= then exit(-) else exit(h[hash,]);
end;
function work(a,b,p:int64):int64;
var j,m,x,cnt,ans,t:int64;
i:longint;
begin
ans:=;
m:=trunc(sqrt(p))+;
x:=pow(a,m,p);
j:=;
for i:= to m do
begin
j:=j*x mod p;
if find(j)=- then insert(j,i);
end;
j:=;
for i:= to m- do
begin
t:=find(j*b mod p);
if t<>- then
begin
cnt:=m*t-i;
if cnt<ans then ans:=cnt;
end;
j:=j*a mod p;
end;
exit(ans);
end;
function gcd(x,y:int64):int64;
begin
if y= then exit(x) else exit(gcd(y,x mod y));
end;
procedure exgcd(a,b:int64;var x,y:int64);
var t:int64;
begin
if b= then
begin
x:=;
y:=;
exit;
end;
exgcd(b,a mod b,x,y);
t:=x;
x:=y;
y:=t-a div b*y;
end;
procedure swap(var a,b:int64); inline;
var c:longint;
begin
c:=a; a:=b; b:=c;
end;
procedure sort(l,r:int64);
var i,j,x:int64;
begin
i:=l; j:=r; x:=ans[(l+r) div ];
while i<=j do
begin
while ans[i]<x do inc(i);
while x<ans[j] do dec(j);
if i<=j then
begin
swap(ans[i],ans[j]);
inc(i); dec(j);
end;
end;
if l<j then sort(l,j);
if i<r then sort(i,r);
end;
begin
init;
readln(b,a,c);
rt:=findrt(c);
t1:=work(rt,b,c);
t2:=c-;
d:=gcd(a,t2);
if t1 mod d<> then
begin
writeln();
exit;
end;
exgcd(a,t2,x,y);
t1:=t1 div d;
t2:=t2 div d;
ans[]:=((x*t1 mod t2)+ t2) mod t2;
for i:= to d do ans[i]:=ans[i-]+t2;
for i:= to d do ans[i]:=pow(rt,ans[i],c);
sort(,d);
writeln(d);
for i:= to d- do write(ans[i],' ');
writeln(ans[d]);
end.
HDU3930 (原根)的更多相关文章
- HDU3930(离散对数与原根)
题目:Broot 题意:给出k,m,newx的值,求方程x^k(mod m)=newx的解,其中m为素数. 解法步骤: (1)先暴力求m的原根g (2)大步小步求g^t1(mod m)=newx (3 ...
- 51nod1135(求最小原根)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1135 题意:中文题诶- 思路:设m是正整数,a是整数,若a模 ...
- [POJ1284]Primitive Roots(原根性质的应用)
题目:http://poj.org/problem?id=1284 题意:就是求一个奇素数有多少个原根 分析: 使得方程a^x=1(mod m)成立的最小正整数x是φ(m),则称a是m的一个原根 然后 ...
- 51nod 1135 原根
题目链接:51nod 1135 原根 设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根.(其中φ(m)表示m的欧拉函数) 阶:gcd(a,m)=1,使得成立的最小的 ...
- hdu4992 Primitive Roots(所有原根)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4992 题意:给出n,输出n的所有原根. 思路:求出n的一个原根x,那么对于所以的i,i<phi( ...
- HDU5478 原根求解
看别人做的很简单我也不知道是怎么写出来的 自己拿到这道题的想法就是模为素数,那必然有原根r ,将a看做r^a , b看做r^b那么只要求出幂a,b就能得到所求值a,b 自己慢慢化简就会发现可以抵消n然 ...
- 【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数
http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equa ...
- 【BZOJ 1319】 Sgu261Discrete Rootsv (原根+BSGS+EXGCD)
1319: Sgu261Discrete Roots Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 389 Solved: 172 Descriptio ...
- 【HDU 4992】 Primitive Roots (原根)
Primitive Roots Description We say that integer x, 0 < x < n, is a primitive root modulo n i ...
随机推荐
- tableviewcell边距和设置值不符
解决方法: 将Table View Cell的Layout Margins由Default改为Explicit,然后修改上下左右的边距.
- script "text/template"
<script type="text/template" id="orgItem"> <div class="{orgClass}& ...
- SAP连接HANA数据库
既然都用HANA了,为什么还要在SAP端,连接HANA数据库,做数据库处理..... 因为HANA数据库,没个用户在STADIO上建的数据库表...只能这个用户使用,而做Universe 设计的时候, ...
- WordPress怎么在页面上添加目录
要实现的如下功能,在页面上添加一个文章目录: 步骤: 1)在wordpress中,在Posts----Categories中建立目录, 2) 3)add new post,指定post所属的cat ...
- 关于call和apply的那点事儿
在JavaScript中改变闭包中的this关键字中经常用到的就是call和apply了 首先:call和apply的作用的区别是什么? 答:call和apply 的作用是相同的.都是用来改变函数th ...
- JS桌面应用
一.图片预加载 var oImg = new Image(); oImg.onload=function(){ //alert('success'); } oImg.onerror=function( ...
- NOIP 2013提高组day 1 T 1转圈游戏 快速幂
描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推 ...
- SrcollView分页加载数据(第二种方法 自定义listView)
package com.baidu.ms; import android.content.Context;import android.util.AttributeSet;import android ...
- 标签工作区(navtab)
B-JUI使用标签可以加载其他页面的数据 B-JUI框架的整个工作区部分就是一个navtab组件,本页面位于"#bjui-container"容器内,固定的html结构如下: &l ...
- A380上11万一张的机票什么享受?来看看
上个月底,全球奢华航班排行榜出炉,新加坡航空头等舱荣登第一.不过,比头等舱更豪奢的,将近两万美元一张往返票的“套间”又是怎么样的呢? 新加坡航空的一名常旅客Derek Low就体验了一把全球最豪奢的坐 ...