[HIHO1143]骨牌覆盖问题·一(矩阵快速幂,递推)
题目链接:http://hihocoder.com/problemset/problem/1143
这个递推还是很经典的,结果是斐波那契数列。f(i) = f(i-1) + f(i-2)。数据范围太大了,应该用快速幂加速下。
/*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f7f, sizeof(a))
#define lrt rt << 1
#define rrt rt << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef pair<LL, LL> pll;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int mod = ;
const int maxn = ;
LL n; typedef struct Matrix {
LL m[maxn][maxn];
int r;
int c;
Matrix(){
r = c = ;
memset(m, , sizeof(m));
}
} Matrix; Matrix mul(Matrix m1, Matrix m2, int mod) {
Matrix ans = Matrix();
ans.r = m1.r;
ans.c = m2.c;
for(int i = ; i <= m1.r; i++) {
for(int j = ; j <= m2.r; j++) {
for(int k = ; k <= m2.c; k++) {
if(m2.m[j][k] == ) continue;
ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
}
}
}
return ans;
} Matrix quickmul(Matrix m, int n, int mod) {
Matrix ans = Matrix();
for(int i = ; i <= m.r; i++) {
ans.m[i][i] = ;
}
ans.r = m.r;
ans.c = m.c;
while(n) {
if(n & ) {
ans = mul(m, ans, mod);
}
m = mul(m, m, mod);
n >>= ;
}
return ans;
} int main() {
// FRead();
while(cin >> n) {
Matrix p, q;
p.r = p.c = ;
p.m[][] = ; p.m[][] = ;
p.m[][] = ; p.m[][] = ;
q.r = ; q.c = ;
if(n <= ) {
cout << n << endl;
continue;
}
q = quickmul(p, n-, mod);
cout << (q.m[][] + q.m[][]) % mod << endl;
}
RT ;
}
[HIHO1143]骨牌覆盖问题·一(矩阵快速幂,递推)的更多相关文章
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- HDU2604:Queuing(矩阵快速幂+递推)
传送门 题意 长为len的字符串只由'f','m'构成,有2^len种情况,问在其中不包含'fmf','fff'的字符串有多少个,此处将队列换成字符串 分析 矩阵快速幂写的比较崩,手生了,多练! 用f ...
- hdu 5171(矩阵快速幂,递推)
GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
- hdu 2842(矩阵高速幂+递推)
题意:一个中国环的游戏,规则是一个木棒上有n个环.第一个环是能够任意放上或拆下的,剩下的环x假设想放上或拆下必须前一个环x-1是放上的且前x-2个环所有是拆下的,问n个环最少多少次操作能够所有拆掉. ...
- CF821 E. Okabe and El Psy Kongroo 矩阵快速幂
LINK 题意:给出$n$条平行于x轴的线段,终点$k$坐标$(k <= 10^{18})$,现在可以在线段之间进行移动,但不能超出两条线段的y坐标所夹范围,问到达终点有几种方案. 思路:刚开始 ...
- HDU 3292 【佩尔方程求解 && 矩阵快速幂】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...
- hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- hihocoder第41周 骨牌覆盖(矩阵快速幂)
由于棋盘只有两行,所以如果第i列的骨牌竖着放,那么就转移为第1列到第i-1列骨牌有多少种摆法 如果第一行第i列骨牌横着放,那么第二行第i列也要横着放,那么就转移为了第1列到第i-2列骨牌有多少种方法 ...
随机推荐
- 【BZOJ】【3004】吊灯
思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...
- depthstencil buffer 不支持 msaa
phyreengine dx11 MRT不支持 depth rendertarget 的msaa 他里面竟然只写着,// not supported yet !!!! 导致hdao 时开msaa的话, ...
- register_globals
register_globals参数为On的时候很危险 这里记录一下各版本register_globals的情况 PHP5.2版本register_globals默认为On PHP5.3 PHP5.3 ...
- 去“IOE”
所谓去“IOE”,是对去“IBM.Oracle.EMC”的简称,三者均为海外IT巨头,其中IBM代表硬件以及整体解决方案服务商,Oracle代表数据库,EMC代表数据存储.去“IOE”策略更广泛的理解 ...
- Google Chrome 浏览器禁用缓存
在使用 Google Chrome 浏览器调试 js 时,会发现修改完 js 不会立即生效,这是由于 chrome 浏览器缓存的原因,而在火狐下没有这个问题.经常使用 chrome 浏览器调试 js ...
- vi/vim使用指北 ---- Moving Around in a Hurry
上一篇文章中,简单列出了一些基本的Vim操作,也列出了很多的光标移动命令,本章主要是有哪些命令可以更快的移动光标. vim的编辑操作,用得最多就是移动光标,对于很少行的文件来说,基本的命令就够用了,但 ...
- 常见的NoSql系统使用场景分析--转载
•Cassandra •特性:分布式与复制的权衡\根据列和键范围进行查询\BigTable类似的功能:列,列族\写比读快很多 •最佳适用:写操作较多,读比较少的时候.如果你的系统都是基于Java的时候 ...
- Javascript 正则表达式_3
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- Maven的安装
我对maven的了解,仅仅局限在百度百科. 由于近期公司需求,我找到了个maven教程:http://wentao365.iteye.com/blog/903396 安装maven其实很简单,就是在A ...
- 关于J-LINK升级最新固件后无法连上的一点分析
昨天升级了最新的 Keil MDK 4.53,怕它老是提示 J-Link 要升级,就去 SEGGER 的网站下了个最新版的 J-Link 软件包(4.46F 版的),装好后运行 J-Link Comm ...