手写数字库很容易建立,但是总会很浪费时间。Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建有一个手写数字数据库,训练库有60,000张手写数字图像,测试库有10,000张。

请访问原站 http://yann.lecun.com/exdb/mnist/

该数据库在一个文件中包含了所有图像,使用起来有所不便。如果我把每个图像分别保存,成了图像各自独立的数据库。

并在Google Code中托管。

如果你有需要,欢迎在此下载:

http://yann.lecun.com/exdb/mnist/

http://code.google.com/p/supplement-of-the-mnist-database-of-handwritten-digits/downloads/list

Handwritten Digits MNIST Handwritten Digits [data/mnist_all.mat]
[training pictures: 012 3456789 ]
[testing pictures: 01 23 456789 ]
8-bit grayscale images of "0" through "9"; about 6K training examples of each class; 1K test examples USPS Handwritten Digits [data/usps_all.mat]
[pictures: 0123456789 ]
8-bit grayscale images of "0" through "9"; 1100 examples of each class. Binary Alphadigits [data/binaryalphadigs.mat] [picture]
Binary 20x16 digits of "0" through "9" and capital "A" through "Z". 39 examples of each class.
From Simon Lucas' (sml@essex.ac.uk), Algoval system.

另有提供matlab读取的MNIST、USPS、Binary Alphadigits数据库,Data for MATLAB hackers,见:http://www.cs.toronto.edu/~roweis/data.html

参考网址:
[1] http://yann.lecun.com/exdb/mnist/
[2] http://hi.baidu.com/ln0707/blog/item/8207ef010a243d81d53f7c03.html
[3] http://www.cs.toronto.edu/~roweis/data.html

[4] http://blog.csdn.net/onezeros/archive/2010/05/28/5631930.aspx

如何使用MNIST数据集:

MNIST是一个据说很出名的手写数字数据库,据说是美国中学生手写的数字,说实话大部分都写得挺丑的。。。Anyway,幸好能看得懂是哪个数字。现在课题是用CNN(卷积神经网络)识别这个数据库的数字。我想,CNN还真没懂,不过先搞清楚怎么读入数据库吧,不然空有理论无法实操。一般人会用MATLAB来做神经网络的东东,而我正是一个一般人。当然,非一般的人可能用python之类的高端平台,反正我是不会。。。
首先上搜索引擎,无论是百度还是google,搜“MNIST”第一个出来的肯定是
http://yann.lecun.com/exdb/mnist/ 没错,就是它!这个网页上面有四个压缩包的链接,下载下来吧少年!然后别忙着关掉这个网页,因为后面的读取数据还得依靠这个网页的说明。
下面用其中一个包t10k-images_idx3为例子,写代码说明如何使用这个数据库。
这是从verysource.com上面下载的源码,赞一个!and再赞一个!
% Matlab_Read_t10k-images_idx3.m
% 用于读取MNIST数据集中t10k-images.idx3-ubyte文件并将其转换成bmp格式图片输出。
% 用法:运行程序,会弹出选择测试图片数据文件t10k-labels.idx1-ubyte路径的对话框和
% 选择保存测试图片路径的对话框,选择路径后程序自动运行完毕,期间进度条会显示处理进度。
% 图片以TestImage_00001.bmp~TestImage_10000.bmp的格式保存在指定路径,10000个文件占用空间39M。。
% 整个程序运行过程需几分钟时间。
% Written By DXY@HUST IPRAI
% 2009-2-22
clear all;
clc;
%读取训练图片数据文件
[FileName,PathName] = uigetfile('*.*','选择测试图片数据文件t10k-images.idx3-ubyte');
TrainFile = fullfile(PathName,FileName);
fid = fopen(TrainFile,'r'); %fopen()是最核心的函数,导入文件,‘r’代表读入
a = fread(fid,16,'uint8'); %这里需要说明的是,包的前十六位是说明信息,从上面提到的那个网页可以看到具体那一位代表什么意义。所以a变量提取出这些信息,并记录下来,方便后面的建立矩阵等动作。
MagicNum = ((a(1)*256+a(2))*256+a(3))*256+a(4);
ImageNum = ((a(5)*256+a(6))*256+a(7))*256+a(8);
ImageRow = ((a(9)*256+a(10))*256+a(11))*256+a(12);
ImageCol = ((a(13)*256+a(14))*256+a(15))*256+a(16);
%从上面提到的网页可以理解这四句,给出了数据集的大小
if ((MagicNum~=2051)||(ImageNum~=10000))
    error('不是 MNIST t10k-images.idx3-ubyte 文件!');
    fclose(fid);    
    return;    
end %排除选择错误的文件。
savedirectory = uigetdir('','选择测试图片路径:');
h_w = waitbar(0,'请稍候,处理中>>');
for i=1:ImageNum
    b = fread(fid,ImageRow*ImageCol,'uint8');   %fread()也是核心的函数之一,b记录下了一副图的数据串。注意这里还是个串,是看不出任何端倪的。
    c = reshape(b,[ImageRow ImageCol]); %亮点来了,reshape重新构成矩阵,终于把串转化过来了。众所周知图片就是矩阵,这里reshape出来的灰度矩阵就是该手写数字的矩阵了。
    d = c'; %转置一下,因为c的数字是横着的。。。
    e = 255-d; %根据灰度理论,0是黑色,255是白色,为了弄成白底黑字就加入了e
    e = uint8(e);
    savepath = fullfile(savedirectory,['TestImage_' num2str(i,d) '.bmp']);
    imwrite(e,savepath,'bmp'); %最后用imwrite写出图片
    waitbar(i/ImageNum);
end
fclose(fid);
close(h_w);
在选择好的路径中,就有了一大堆MNIST的手写数字的图片。想弄哪个,就用imread()弄它!

MNIST手写数字数据库的更多相关文章

  1. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  2. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  3. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...

  4. 第三节,CNN案例-mnist手写数字识别

    卷积:神经网络不再是对每个像素做处理,而是对一小块区域的处理,这种做法加强了图像信息的连续性,使得神经网络看到的是一个图像,而非一个点,同时也加深了神经网络对图像的理解,卷积神经网络有一个批量过滤器, ...

  5. mnist 手写数字识别

    mnist 手写数字识别三大步骤 1.定义分类模型2.训练模型3.评价模型 import tensorflow as tfimport input_datamnist = input_data.rea ...

  6. 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型

    持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...

  7. Tensorflow可视化MNIST手写数字训练

    简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...

  8. 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别

    用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...

  9. Tensorflow之MNIST手写数字识别:分类问题(1)

    一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展 ...

随机推荐

  1. WPF 基础面试题及答案(一)

    一 · WPF由哪两部分组成? wpf 由两个主要部分 组成:引擎和编程框架. 1 引擎.wpf引擎是基于窗体的应用程序 图形 视频 音频和文档提供了一个单一的运行时库.重要的是WPF基于矢量的呈现引 ...

  2. Mybatis-Plugin插件学习使用方法

    以下教程仅供学习使用,针对于IntelliJ Idea 15中的Mybatis Plugin插件. 作者博客中的教程:http://myoss.github.io/2016/MyBatis-Plugi ...

  3. PostgreSQL Performance Monitoring Tools

    PostgreSQL Performance Monitoring Tools https://github.com/CloudServer/postgresql-perf-tools This pa ...

  4. JAVA JDBC连接 SQLServer2012 连接失败 端口号错误

    SQLServer2012的SQL Sever 网络配置 我有4个 SQLEXPRESS的协议 SQLSERVER2008的协议 MSSQLSERVER的协议 SQLSERVER2012的协议 他们都 ...

  5. ShowMessage和MessageDlg消息对话框(VCL)

    ShowMessage一个简单的消息提示: 例如:ShowMessage("xxxx"); MessageDlg(constAnsiString Msg, TMsgDlgType ...

  6. Java编程思想(一):大杂烩

    在java中一切都被视为对象.尽管一切都是对象,但是操纵的标识符实际上是对象的一个引用,可以将引用想象成是遥控器(引用)来操纵电视机(对象).没有电视机,遥控器也可以单独存在,即引用可以独立存在,并不 ...

  7. 构造方法特点,void

    构造方法特点: 1.和类有相同的名字 2.无返回值 3.被默认强制void void作用:====>>说明声明的方法没有返回值 构造方法作用: -->初始化实例属性 -->用于 ...

  8. 前端开发与Seo基础

    网页代码优化       1:<title>标题:强调重点,重点关键词放在前面,每个页面的title尽量不相同 2:<meta keywords>关键词:列举出几个重要关键词, ...

  9. sql 中各种锁随记

    一. 为什么要引入锁    多个用户同时对数据库的并发操作时会带来以下数据不一致的问题:    丢失更新  A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系 ...

  10. 夺命雷公狗---TP商城----TP之配置环境---1

    下载到tp3.2.3版本后架设到自己的wamp环境下,然后配置虚拟主机,完事后直接开工 环境下创建一个文件夹,然后里面存放这这两个文件即可开始新的旅途了 这里完了,下一步就开始配置index.php文 ...