点此看题面

大致题意: 有\(k\)种面具(\(k\)是一个未知数且\(k≥3\),每种面具可能有多个),已知戴第\(i\)种面具的人能看到第\(i+1\)种面具上的编号,特殊的,戴第\(k\)种面具的人能看到第\(1\)种面具上的编号,现在用\(x\)和\(y\)来表示戴着第\(x\)号的面具的人能看到第\(y\)号面具的编号,给你\(m\)组\(x\)和\(y\)(信息可能并不完整),请你求出至多和至少有多少个面具。

题解

这道题可以近似地看作一个有向图,但是有向图在这道题目中是极难操作的,因此我们可以用一个简(xuan)单(xue)的小技巧:

add(x,y,1),add(y,x,-1);//将从x到y的有向边分成从x到y的权值为1的边和从y到x的权值为-1的边,虽说依然是有向图,但操作起来与无向图差不多,可以从两个方向走

有了这个铺垫,后面的过程就会省力许多。

其实,我们可以对这道题中的图进行一个分类讨论

第一种情况是图中只存在环

如果是个有向图,找环是个很麻烦的过程,但由于我们之前已经把这张图改成了无向图,找环就非常方便啦!

在找环的过程中,我们可以轻松计算出环的长度(用当前值减去上一次访问该节点时的值,然后取绝对值即可,具体实现见代码)。

此时,我们可以得出一个十分显然的结论:面具的种类数是所有环长的gcd的一个因数(证明?我也不知道,感性理解一下即可)。

因此,最终面具的种数的最大值应为所有环长的gcd,最小值应为该gcd大于等于3的最小因数

第二种情况则是图中不存在环,而是由若干棵树(这里我们把链也当作一棵树)组成。

这个时候的答案就更好推了,最大值就是最大的树的深度,最小值就是3,当然要注意判断最大值是否小于3,小于3要输出-1。

那不就好了吗?直接上代码!

等等。。。如果原图中既有环又有树(链)呢?那该怎么办?

答案是没关系!当作只有环来做就可以了,因为树在这种情况中可以忽略不计!

代码

#include<bits/stdc++.h>
#define N 100000
#define M 1000000
using namespace std;
int n,m,ans=0,ee=0,Min,Max,sum,lnk[N+5],vis[N+5],s[N+5];
struct edge
{
int to,nxt,val;
}e[2*M+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) if(ch=='-') f=-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(int x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y,int z)
{
e[++ee].to=y,e[ee].nxt=lnk[x],e[ee].val=z,lnk[x]=ee;
}
inline int gcd(int x,int y)
{
return y?gcd(y,x%y):x;
}
inline void dfs(int x)//用dfs对原图进行遍历,记录是环长gcd和最大树的深度
{
vis[x]=1;//标记已访问
for(register int i=lnk[x];i;i=e[i].nxt)
{
if(vis[e[i].to]) ans=gcd(s[x]-s[e[i].to]+e[i].val,ans);//说明有环,并更新环长gcd
else s[e[i].to]=s[x]+e[i].val,Min=min(Min,s[e[i].to]),Max=max(Max,s[e[i].to]),dfs(e[i].to);//更新最大树的深度,并继续往下dfs
}
}
int main()
{
register int i;int x,y;
for(read(n),read(m),i=1;i<=m;++i)
read(x),read(y),add(x,y,1),add(y,x,-1);
for(i=1;i<=n;++i)
if(!vis[i]) Min=Max=0,dfs(i),sum+=Max-Min+1;//若当前节点没有访问过,则对其进行dfs
if(ans<0) ans=-ans;//ans在一波操作后可能会小于0,若其小于0则要将其改为正数
if(ans)//ans不为0说明有环
{
if(ans<3) return puts("-1 -1"),0;//ans小于3,说明无解,直接输出-1并退出程序
write(ans),putchar(' ');
for(i=3;i<=ans;i++)
if(!(ans%i)) return write(i),0;//寻找环长gcd大于3的最小因数
}
if(sum<3) puts("-1 -1");//判断最大深度是否小于3
else write(sum),putchar(' '),putchar('3');//输出答案
return 0;
}

【BZOJ1064】[NOI2008] 假面舞会(图上DFS)的更多相关文章

  1. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  2. 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链

    luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...

  3. BZOJ1064 [Noi2008]假面舞会 【dfs】

    题目 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办方会把此编号告诉拿 ...

  4. 【图论 搜索】bzoj1064: [Noi2008]假面舞会

    做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...

  5. BZOJ1064 NOI2008 假面舞会 图论

    传送门 将一组关系\((A,B)\)之间连一条边,那么显然如果图中存在环长为\(len\)的环,那么面具的种数一定是\(len\)的因数. 值得注意的是这里环的关系除了\(A \rightarrow ...

  6. BZOJ1064 NOI2008假面舞会(dfs树)

    将图中的环的长度定义为正向边数量-反向边数量,那么答案一定是所有环的环长的共同因子.dfs一下就能找到图中的一些环,并且图中的所有环的环长都可以由这些环长加加减减得到(好像不太会证).如果有环长为1或 ...

  7. BZOJ1064 NOI2008假面舞会

    挺神的这题,发现只有环和链两种情况 搜索时我们只考虑环的,因为链可以看成找不到分类的环. 当成链时大小是的最大值是各链长的和,最小值是3 当成环时最大值是各环长的gcd,最小值是大于3的最小的ans的 ...

  8. 【BZOJ1064】[Noi2008]假面舞会 DFS树

    [BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...

  9. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  10. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

随机推荐

  1. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  2. POJ3274-Gold Balanced Lineup

    题目链接:点击打开链接 Gold Balanced Lineup Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16978 ...

  3. IDEA 工具使用指南

    给项目增加jdk , 方便查看不同版本的jdk源码 鼠标滚轮放大缩小字体 wheel zoom 设置JVM参数 https://www.jetbrains.com/help/idea/tuning-t ...

  4. CollabNet Subversion Edge 迁移的方法

    服务器迁移或重新搭建时,数据迁移方法,安装配置在https://www.cnblogs.com/pinpin/p/9889362.html种 这里只是迁移用户和数据,做个备注而且,比较简单所以不截图了 ...

  5. Linux重新挂载磁盘

    Linux下磁盘和目录的概念与WIN不同:比如,分了一个系统分区默认挂载了根(/)目录,根下还有其它目录,比如/user /lib等.如果系统分区不够用,可以再分出分支,把根下其它目录分别挂载出来,例 ...

  6. 最简实例演示asp.net5中用户认证和授权(2)

    上接最简实例演示asp.net5中用户认证和授权(1) 基础类建立好后,下一步就要创建对基础类进行操作的类了,也就是实现基础类的增删改查(听起来不太高大上),当然,为了使用asp.net5的认证机制, ...

  7. ElasticSearch安装和核心概念

    1.ElasticSearch安装 elasticsearch的安装超级easy,解压即用(要事先安装好java环境). 到官网 http://www.elasticsearch.org下载最新版的 ...

  8. 学习笔记:location.hash和history.pushState()

    在浏览器中改变地址栏url,将会触发页面资源的重新加载,这使得我们可以在不同的页面间进行跳转,得以浏览不同的内容.但随着单页应用的增多,越来越多的网站采用ajax来加载资源.因为异步加载的特性,地址栏 ...

  9. JQuery初识(二)

    一丶链式编程 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  10. 【干货】Html与CSS入门学习笔记12-14【完】

    十二.HTML5标记 现代HTML html5新增的元素:header nav footer aside section article time 这些新增元素使页面结构更清晰,取代<div i ...