Poj 1860 Currency Exchange(Bellman-Ford,SPFA解单源最短路径问题)
一、题意
有多个货币交易点,每个只能互换两种货币,兑换的汇率不同,并收取相应的手续费。有N种货币,假定你拥有第S中,数量为V,有M个兑换点。问你能不能通过兑换操作使你最后拥有的S币比起始的时候多。
二、题解
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路(在这一回路上,顶点的权值能不断增加,即能一直进行松弛),且最后得到的s金额是增加的。说到松弛我们立即会想到Bellman-Ford算法,它的特点是可以处理负权边,并能判断是否存在负环(负权回路)。本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。关于bellman-Ford算法请关注本博客对它的详细分析。
bellman-Ford算法的时效性较好,时间复杂度O(VE)。这里也介绍一下它的队列优化算法SPFA。它是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k<<V)。与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
三、java算法
bellman-Ford算法
import java.util.Scanner;
class Edge{
int startNode,endNode;
double exchangeRate;
double commission;
}
public class Main{ static Edge[] edge=new Edge[210];
static int pe;
static int N,M,S;
static double V;
static double dis[]=new double[110]; static boolean bellman_ford(){
boolean sign = false;
dis[S]=V;
for(int j=0;j<N+1;j++){
sign=false;
for(int i=0;i<pe;i++)
if(dis[edge[i].endNode]<(dis[edge[i].startNode]-edge[i].commission)*edge[i].exchangeRate){
dis[edge[i].endNode]=(dis[edge[i].startNode]-edge[i].commission)*edge[i].exchangeRate;
sign=true;
}
if(!sign)
break;
}
if(sign)
return false;
else
return true;
} public static void main(String args[]){
Scanner sc=new Scanner(System.in);
for(int i=0;i<210;i++){
edge[i]=new Edge();
}
N=sc.nextInt();
M=sc.nextInt();
S=sc.nextInt();
V=sc.nextDouble();
pe=0;
int a,b;
double rab,cab,rba,cba; for(int i=0;i<M;i++){
a=sc.nextInt();
b=sc.nextInt();
rab=sc.nextDouble();
cab=sc.nextDouble();
rba=sc.nextDouble();
cba=sc.nextDouble();
edge[pe].startNode=a;
edge[pe].endNode=b;
edge[pe].exchangeRate=rab;
edge[pe++].commission=cab;
edge[pe].startNode=b;
edge[pe].endNode=a;
edge[pe].exchangeRate=rba;
edge[pe++].commission=cba;
}
if(bellman_ford())
System.out.println("NO");
else
System.out.println("YES");
}
}
SFPA算法
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main{ static int MAX_Node =110;
static int N,M,S;
static double V;
static double exchangeRate[][]=new double[MAX_Node][MAX_Node];
static double commission[][]=new double[MAX_Node][MAX_Node]; public static boolean spfa(int start){
Queue<Integer> Que=new LinkedList<Integer>();
int cnt[]=new int[MAX_Node]; //记录进入队列的次数,超过N则存在正权回路
boolean[] vst=new boolean[MAX_Node]; //记录节点是否在队列中、
double[] dis=new double[MAX_Node]; //记录每个结点的最短路径估计值
for(int i=0;i<=N;i++){
vst[i]=false;
cnt[i]=0;
dis[i]=0;
}
dis[start]=V;
vst[start]=true;
cnt[start]=1;
Que.add(start);
while(Que.size()!=0){
int u=Que.poll();
vst[u]=false;
for(int i=1;i<=N;i++){
if(exchangeRate[u][i]>0 && ((dis[u]-commission[u][i]) * exchangeRate[u][i]) > dis[i]){
dis[i]=(dis[u]-commission[u][i]) * exchangeRate[u][i]; //松弛
if(!vst[i]){
vst[i]=true;
Que.add(i);
cnt[i]++;
if(cnt[i]>=N)
return true;
}
}
}
}
return dis[S]>V;
} public static void main(String args[]){
Scanner sc=new Scanner(System.in);
int i;
N=sc.nextInt();
M=sc.nextInt();
S=sc.nextInt();
V=sc.nextDouble();
for(i=0;i<M;i++){
int a,b;
a=sc.nextInt();
b=sc.nextInt();
exchangeRate[a][b]=sc.nextDouble();
commission[a][b]=sc.nextDouble();
exchangeRate[b][a]=sc.nextDouble();
commission[b][a]=sc.nextDouble();
}
if(spfa(S))
System.out.println("YES");
else
System.out.println("NO");
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Poj 1860 Currency Exchange(Bellman-Ford,SPFA解单源最短路径问题)的更多相关文章
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other) T ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- SPFA解决单源最短路径
SPFA(Shortest Path Faster Algorithm): 一:基本算法 在求解单源最短路径的时候,最经典的是 Dijkstra 算法,但是这个算法对于含有负权的图就无能为力了,而 B ...
- SPFA求单源最短路径
序 求最短路径的算法有很多,各有优劣. 比如Dijkstra(及其堆(STL-priority_queue)优化),但是无法处理负环的情况: 比如O(n^3)的Floyd算法:比如Bellman-Fo ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 19881 Accepted: 711 ...
随机推荐
- [ACM] FZU 2087 统计数边 (有多少边至少存在一个最小生成树里面)
Problem Description 在图论中,树:随意两个顶点间有且仅仅有一条路径的图. 生成树:包括了图中全部顶点的一种树. 最小生成树:对于连通的带权图(连通网)G,其生成树也是带权的. 生成 ...
- CentOS iSCSI服务器搭建------LUN篇
先上服务器信息(你懂得) [root@node ~]# cat /etc/redhat-release CentOS release 6.6 (Final) [root@node ~]# uname ...
- Django模型系统——ORM中跨表、聚合、分组、F、Q
核心知识点: 1.明白表之间的关系 2.根据关联字段确定正反向,选择一种方式 在Django的ORM种,查询既可以通过查询的方向分为正向查询和反向查询,也可以通过不同的对象分为对象查询和Queryse ...
- python spark
http://blog.jobbole.com/86232/ 1. 安装lib 材料: spark : http://spark.apache.org/downloads.html hadoop : ...
- jQuery自定义美化下拉框
在线演示 本地下载
- import与import static
import ......className (静态导入) 功能: 导入一个类 import static ......className.* 功能:导入这个类里的静态方法,是JDK1.5中的新特性, ...
- 让win10登陆时不再要求手动输入用户名
如果windows每次登陆都要求手动输入用户名,可以用如下的方法避免: Windows10专业版.企业版和教育版用户 在运行或Cortana搜索栏输入secpol.msc后,按回车键进入"本 ...
- linux常见命令2
systemctl set-hostname HOSTNAME 在centos7上设置主机名,永久有效 curl -O -L http://www.gnu.org/software/gettext/ ...
- Hive- 表
在hive中表的类型:管理表和托管表(外部表). 内部表也称之为MANAGER_TABLE,默认存储在/user/hive/warehouse下,也可以通过location指定:删除表时,会删除表的数 ...
- Function Pointers in C
来源:https://cs.nyu.edu/courses/spring12/CSCI-GA.3033-014/Assignment1/function_pointers.html Function ...