The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n~1~\^P + ... n~K~\^P

where n~i~ (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12^2^ + 4^2^ + 2^2^ + 2^2^ + 1^2^, or 11^2^ + 6^2^ + 2^2^ + 2^2^ + 2^2^, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a~1~, a~2~, ... a~K~ } is said to be larger than { b~1~, b~2~, ... b~K~ } if there exists 1<=L<=K such that a~i~=b~i~ for i<L and a~L~>b~L~

If there is no solution, simple output "Impossible".

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible
题意比较好懂,容易想到dfs,但是不能纯回溯,需要剪枝,或者说按照一个非递减的顺序去试每个值,而且判断结果时满足k项就更新,因为从第一层开始,往下dfs,每一层的初始试验值都大于等于上一层的正在试验值,如果遇到跟之前一次结果相同的,序列一定比之前大。
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int n,k,p;
vector<int> temp,ans;
int pow_[];///把可能用到的p次方都算出来,要多算一个 这样循环结束 不至于死循环(如果算的pow_[j] 都小于n 那么最大的max(j) + 1对应pow_[j]初始为0
int pow(int t) {
int d = ;
for(int i = ;i < p;i ++) {
d *= t;
}
return d;
}
void dfs(int t,int s,int last) {///last是上一层正在尝试的 ,本次从last开始 达到非递减的目的
if(t >= k) {
if(!s) {
ans = temp;
}
return;
}
while(pow_[last] <= s) {///这里防止死循环 如果last = max(j) 保证pow_[last]能使循环结束
temp.push_back(last);
dfs(t + ,s - pow_[last],last);
temp.pop_back();
last ++;
}
}
int main() {
scanf("%d%d%d",&n,&k,&p);
int j = ,d = ;
while(d <= n) {
pow_[j ++] = d;
d = pow(j);
}
pow_[j] = d;///多算一次 不然判断会死循环
dfs(,n,);
if(ans.empty())printf("Impossible");
else {
printf("%d = %d^%d",n,ans[k - ],p);
for(int i = k - ;i >= ;i --) {
printf(" + %d^%d",ans[i],p);
}
}
}

1103 Integer Factorization (30)(30 分)的更多相关文章

  1. 【PAT】1103 Integer Factorization(30 分)

    The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  2. PAT 1103 Integer Factorization[难]

    1103 Integer Factorization(30 分) The K−P factorization of a positive integer N is to write N as the ...

  3. 1103 Integer Factorization (30)

    1103 Integer Factorization (30 分)   The K−P factorization of a positive integer N is to write N as t ...

  4. PAT甲级——1103 Integer Factorization (DFS)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90574720 1103 Integer Factorizatio ...

  5. PAT甲级1103. Integer Factorization

    PAT甲级1103. Integer Factorization 题意: 正整数N的K-P分解是将N写入K个正整数的P次幂的和.你应该写一个程序来找到任何正整数N,K和P的N的K-P分解. 输入规格: ...

  6. 【PAT甲级】1103 Integer Factorization (30 分)

    题意: 输入三个正整数N,K,P(N<=400,K<=N,2<=P<=7),降序输出由K个正整数的P次方和为N的等式,否则输出"Impossible". / ...

  7. 1103. Integer Factorization (30)

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  8. PAT A1103 Integer Factorization (30 分)——dfs,递归

    The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  9. PAT (Advanced Level) 1103. Integer Factorization (30)

    暴力搜索. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #i ...

随机推荐

  1. PAT 1053. 住房空置率 (20)

    在不打扰居民的前提下,统计住房空置率的一种方法是根据每户用电量的连续变化规律进行判断.判断方法如下: 在观察期内,若存在超过一半的日子用电量低于某给定的阈值e,则该住房为“可能空置”: 若观察期超过某 ...

  2. Struts2之ModelDriven的使用

    http://www.cnblogs.com/luoyanli/archive/2012/11/20/2778361.html 我们可以根据Action属性的不同将它分为两类:Field-Driven ...

  3. spring 3.2 后 annotation-driven 注册新的类

    DefaultAnnotationHandlerMapping 和 AnnotationMethodHandlerAdapter 的使用已经过时! DefaultAnnotationHandlerMa ...

  4. Excel控制IE

    ---恢复内容开始--- 1.初始化and连接http网页 Set ie = CreateObject("InternetExplorer.Application") ie.Vis ...

  5. html post

    post请求对应的html页面 页面效果 html代码 <html> <body> <form method="post" > First na ...

  6. Java进阶学习:JSON解析利器JackSon

    Java:JSON解析利器JackSon JackSon基础 1.Maven项目引入 <!-- https://mvnrepository.com/artifact/org.codehaus.j ...

  7. ButterKnife 原理解析

    一.使用方法 1.添加依赖. implementation 'com.jakewharton:butterknife:8.8.1' annotationProcessor 'com.jakewhart ...

  8. PAT 天梯赛 L2-003. 月饼 【贪心】

    题目链接 https://www.patest.cn/contests/gplt/L2-003 思路 用贪心思路 最后注意一下 总售价有可能是浮点数 AC代码 #include <cstdio& ...

  9. javascript操作常见的html标签

    几乎HTML所有标记都可以说是HTML的控件,如select, input, div, table等.html标签便捷的操作,深受大家的喜欢.现在的大部分网站都是ajax+json来进行数据传送.所以 ...

  10. Java多线程系列 JUC线程池01 线程池框架

    转载  http://www.cnblogs.com/skywang12345/p/3509903.html 为什么引入Executor线程池框架 new Thread()的缺点 1. 每次new T ...