题意:

有两个\(n \times m\)的矩阵\(A,B\),都是由\(1 \times 2\)的砖块铺成,代表初始状态和结束状态

有一种操作可以把两个砖块拼成的\(2 \times 2\)的矩形旋转\(90^{\circ}\)

问如何操作才能使初始状态转化为结束状态,无解输出\(-1\)

分析:

不妨假设\(m\)为偶数,否则可以旋转整个矩阵使得矩阵的列数为偶数

先找一个中间过度状态矩阵\(C\),它的每个砖块都是水平方向的

求出\(A \to C\)和\(B \to C\)的操作序列,因为操作是可逆的,所以就得到了\(A \to C \to B\)的操作序列

从第一行开始逐个扫描,遇到一个竖直方向的砖块就将它旋转,这是可能有两种情况:

  • 右边的砖块也是竖直方向的,那么可以直接旋转
  • 右边砖块是水平的,那么就递归到子问题:将右边的水平砖块先旋转过来,再一起旋转

算法的正确性不会证=_=

#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
using namespace std; const int maxn = 60;
typedef pair<int, int> PII;
#define ALL(x) (x).begin(), (x).end() int n, m, Max;
char s1[maxn][maxn], s2[maxn][maxn];
vector<PII> a, b; void rotate(char s[][maxn], int x, int y) {
if(s[x][y] == 'U') {
s[x][y] = s[x+1][y] = 'L';
s[x][y+1] = s[x+1][y+1] = 'R';
} else {
s[x][y] = s[x][y+1] = 'U';
s[x+1][y] = s[x+1][y+1] = 'D';
}
} bool check(char s[][maxn], int x, int y) {
if(s[x][y] == s[x][y+1] && s[x][y] == 'U' && s[x+1][y] == s[x+1][y+1] && s[x+1][y] == 'D') return true;
if(s[x][y] == s[x+1][y] && s[x][y] == 'L' && s[x][y+1] == s[x+1][y+1] && s[x][y+1] == 'R') return true;
return false;
} bool adjust(char s[][maxn], int x, int y, int flag, vector<PII>& a) {
if(x + 1 >= n || y + 1 >= m) return false;
if(check(s, x, y)) {
rotate(s, x, y);
a.emplace_back(x, y);
return true;
} else {
if(!adjust(s, x+1-flag, y+flag, flag^1, a)) return false;
rotate(s, x, y);
a.emplace_back(x, y);
return true;
}
} void op(char& c) {
switch(c) {
case 'L': c = 'U'; break;
case 'U': c = 'L'; break;
case 'R': c = 'D'; break;
case 'D': c = 'R'; break;
}
} void change(char s[][maxn]) {
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++) op(s[i][j]);
for(int i = 0; i < Max; i++)
for(int j = 0; j < i; j++)
swap(s[i][j], s[j][i]);
} int main()
{
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++) scanf("%s", s1[i]);
for(int i = 0; i < n; i++) scanf("%s", s2[i]);
Max = n > m ? n : m;
bool changed = false;
if(m & 1) { change(s1); change(s2); swap(n, m); changed = true; } for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j += 2) {
if(s1[i][j] != 'L') {
if(!adjust(s1, i, j, 1, a)) { puts("-1"); return 0; }
}
if(s2[i][j] != 'L') {
if(!adjust(s2, i, j, 1, b)) { puts("-1"); return 0; }
}
}
} reverse(ALL(b));
a.insert(a.end(), ALL(b));
printf("%d\n", (int)a.size());
for(pair<int, int> t : a) {
if(changed) swap(t.first, t.second);
printf("%d %d\n", t.first + 1, t.second + 1);
} return 0;
}

CodeForces 778D Parquet Re-laying 构造的更多相关文章

  1. CF 778D Parquet Re-laying——构造

    题目:http://codeforces.com/problemset/problem/778/D 完全没思路……就看了题解. 很好地思路是考虑操作可逆,所以起始状态和最终状态都变到一个中转状态,即都 ...

  2. Educational Codeforces Round 10 B. z-sort 构造

    B. z-sort 题目连接: http://www.codeforces.com/contest/652/problem/B Description A student of z-school fo ...

  3. Codeforces 707C Pythagorean Triples(构造三条边都为整数的直角三角形)

    题目链接:http://codeforces.com/contest/707/problem/C 题目大意:给你一条边,问你能否构造一个包含这条边的直角三角形且该直角三角形三条边都为整数,能则输出另外 ...

  4. Codeforces 1246D/1225F Tree Factory (构造)

    题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...

  5. Codeforces - 1202D - Print a 1337-string... - 构造

    https://codeforces.com/contest/1202/problem/D 当时想的构造是中间两个3,然后前后的1和7组合出n,问题就是n假如是有一个比较大的质数因子或者它本身就是质数 ...

  6. Codeforces 743C - Vladik and fractions (构造)

    Codeforces Round #384 (Div. 2) 题目链接:Vladik and fractions Vladik and Chloe decided to determine who o ...

  7. Codeforces 1368E - Ski Accidents(构造+思维)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙构造题(不过可能我构造太烂了?) 首先考虑这个奇奇怪怪的 \(\dfrac{4}{7}\),以及这个每个点出度最多为 \(2\) 的条 ...

  8. Codeforces 1270E - Divide Points(构造+奇偶性)

    Codeforces 题目传送门 & 洛谷题目传送门 显然,直接暴力枚举是不可能的. 考虑将点按横纵坐标奇偶性分组,记 \(S_{i,j}=\{t|x_t\equiv i\pmod{2},y_ ...

  9. codeforces 622C. Optimal Number Permutation 构造

    题目链接 假设始终可以找到一种状态使得值为0, 那么两个1之间需要隔n-2个数, 两个2之间需要隔n-3个数, 两个3之间隔n-4个数. 我们发现两个三可以放到两个1之间, 同理两个5放到两个3之间. ...

随机推荐

  1. ios两个app之间跳转,传值的实现

    两个APP之间的跳转是通过[[UIApplication sharedApplication] openURL:url]这种方式来实现的. 1.首先设置第一个APP的url地址 2.接着设置第二个AP ...

  2. dedecms网站扩展手机网站—共用数据库真正做到电脑手机同步访问,原pc站无需改动,对原pc站无任何影响

    在如今无线互联网大潮的冲击下,越来越多的pc网站访问量下降,首当其冲的就是以pc网站为生的站长们,为了顺应无线互联网的要求,站长们很有必要为自己的pc网站扩展一套手机网站,更早的抓住手机用户的流量,使 ...

  3. 诸葛io | 精细化运营分析解决方案

    类型: 定制服务 软件包: business intelligence internet media solution collateral 联系服务商 产品详情 解决方案 概要 数据监测 ? 异常发 ...

  4. MongoDB 安装笔记

    一.MongoDB的安装 1.在MongoDB的官网下载对应的安装文件() 2.解压安装文件 #解压tgz文件 tar -zxvf mongodb-linux-x86_64-ubuntu1604-3. ...

  5. Linux远程桌面(二)

    上一篇远程桌面采用的独立服务配置不适用于过多用户,这一篇采用超级Internet服务器搭建vnc服务可以解决多用户问题.  vnc之xinetd服务搭建配置 Linux远程桌面(一):vnc之独立服务 ...

  6. Multi-modal Sentence Summarization with Modality Attention and Image Filtering 论文笔记

     文章已同步更新在https://ldzhangyx.github.io/,欢迎访问评论.   五个月没写博客了,不熟悉我的人大概以为我挂了…… 总之呢这段时间还是成长了很多,在加拿大实习的两个多月来 ...

  7. 金庸的武侠世界和SAP的江湖

    2018年10月30日晚,成都地铁一号线,Jerry手机app上突然弹出来一条金庸去世的新闻. Jerry识字很早,小学一年级就开始蹭我父亲的<射雕英雄传>看了.小时候,我爸工作的车间里有 ...

  8. IOS NSThread(线程同步)

    @interface HMViewController () /** 剩余票数 */ @property (nonatomic, assign) int leftTicketsCount; @prop ...

  9. java 解决 java.lang.Integer cannot be cast to java.lang.String

    1.在执行代码打印map的value时,提示错误java.lang.Integer cannot be  cast to java.lang.String,这个错误很明显是类型转换错误 查看表字段的数 ...

  10. Poj(1426),BFS

    题目链接:http://poj.org/problem?id=1426 可能数据比较水,没有用到大整数.刚刚开始的时候,想从后往前加0或者1,发现有点难写,后来想到先放一个1,再1*10,1*10+1 ...