1.(1)

# 基本参数:axis、skipna

import numpy as np
import pandas as pd df = pd.DataFrame({'key1':[4,5,3,np.nan,2],
'key2':[1,2,np.nan,4,5],
'key3':[1,2,3,'j','k']},
index = ['a','b','c','d','e'])
print(df)
print(df['key1'].dtype,df['key2'].dtype,df['key3'].dtype)
print('-----') m1 = df.mean()
print(m1,type(m1))
print('单独统计一列:',df['key2'].mean())
print('-----')
# np.nan :空值
# .mean()计算均值
# 只统计数字列,字符串的列不会进行统计了
# 可以通过索引单独统计一列 m2 = df.mean(axis=1)
print(m2)
print('-----')
# axis参数:默认为0,以列来计算,axis=1,以行来计算,这里就按照行来汇总了 m3 = df.mean(skipna=False)
print(m3)
print('-----')
# skipna参数:是否忽略NaN,默认True,如False,有NaN的列统计结果仍未NaN

输出结果:

  key1  key2 key3
a 4.0 1.0 1
b 5.0 2.0 2
c 3.0 NaN 3
d NaN 4.0 j
e 2.0 5.0 k
float64 float64 object
-----
key1 3.5
key2 3.0
dtype: float64 <class 'pandas.core.series.Series'>
单独统计一列: 3.0
-----
a 2.5
b 3.5
c 3.0
d 4.0
e 3.5
dtype: float64
-----
key1 NaN
key2 NaN
dtype: float64
-----

(2)

import numpy
ar = numpy.random.rand(1000)
ar.mean() #数组同样计算 引用 输出结果:
0.50208686016230231

(3)

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(10,2),columns = ['A','B'])
df['means'] = df.mean(axis = 1) # 新增加一列,列名为’mean',axis= 1表示按行计算均值 ,并把计算的均值添加到列means中
print(df)
df.loc['mean'] = df.mean(axis = 0) # 新增加一行,行名为’mean',axis= 0表示按列计算均值 ,并把计算的均值添加到行mean中
df

输出结果:

          A         B     means
0 0.477583 -0.848570 -0.185493
1 0.756248 1.268240 1.012244
2 1.385510 -0.376960 0.504275
3 -0.858495 0.814814 -0.021841
4 -0.555510 0.432579 -0.061465
5 0.769137 0.245349 0.507243
6 1.703793 0.587001 1.145397
7 -1.035849 -0.953496 -0.994673
8 -0.065659 -0.600356 -0.333008
9 2.138832 0.053595 1.096213

2.

# 主要数学计算方法,可用于Series和DataFrame(1)

df = pd.DataFrame({'key1':np.arange(10),
'key2':np.random.rand(10)*10})
print(df)
print('-----') print(df.count(),'→ count统计非Na值的数量\n')
print(df.min(),'→ min统计最小值\n',df['key2'].max(),'→ max统计最大值\n')
print(df.quantile(q=0.75),'→ quantile统计分位数,参数q确定位置\n')
print(df.sum(),'→ sum求和\n')
print(df.mean(),'→ mean求平均值\n')
print(df.median(),'→ median求算数中位数,50%分位数\n')
print(df.std(),'\n',df.var(),'→ std,var分别求标准差,方差\n')
print(df.skew(),'→ skew样本的偏度\n')
print(df.kurt(),'→ kurt样本的峰度\n')

输出结果:

 key1      key2
0 0 6.792638
1 1 1.049023
2 2 5.441224
3 3 4.667631
4 4 2.053692
5 5 9.813006
6 6 5.074884
7 7 1.526651
8 8 8.519215
9 9 3.543486
-----
key1 10
key2 10
dtype: int64 → count统计非Na值的数量 key1 0.000000
key2 1.049023
dtype: float64 → min统计最小值
9.81300585173231 → max统计最大值 key1 6.750000
key2 6.454785
Name: 0.75, dtype: float64 → quantile统计分位数,参数q确定位置 key1 45.00000
key2 48.48145
dtype: float64 → sum求和 key1 4.500000
key2 4.848145
dtype: float64 → mean求平均值 key1 4.500000
key2 4.871257
dtype: float64 → median求算数中位数,50%分位数 key1 3.027650
key2 2.931062
dtype: float64
key1 9.166667
key2 8.591127
dtype: float64 → std,var分别求标准差,方差 key1 0.000000
key2 0.352466
dtype: float64 → skew样本的偏度 key1 -1.20000
key2 -0.79798
dtype: float64 → kurt样本的峰度

3.

# 主要数学计算方法,可用于Series和DataFrame(2)

df['key1_s'] = df['key1'].cumsum()
df['key2_s'] = df['key2'].cumsum()
print(df,'→ cumsum样本的累计和\n') df['key1_p'] = df['key1'].cumprod()
df['key2_p'] = df['key2'].cumprod()
print(df,'→ cumprod样本的累计积\n') print(df.cummax(),'\n',df.cummin(),'→ cummax,cummin分别求累计最大值,累计最小值\n')
# 会填充key1,和key2的值

输出结果:

 key1      key2  key1_s     key2_s
0 0 6.792638 0 6.792638
1 1 1.049023 1 7.841661
2 2 5.441224 3 13.282885
3 3 4.667631 6 17.950515
4 4 2.053692 10 20.004208
5 5 9.813006 15 29.817213
6 6 5.074884 21 34.892097
7 7 1.526651 28 36.418749
8 8 8.519215 36 44.937963
9 9 3.543486 45 48.481450 → cumsum样本的累计和 key1 key2 key1_s key2_s key1_p key2_p
0 0 6.792638 0 6.792638 0 6.792638
1 1 1.049023 1 7.841661 0 7.125633
2 2 5.441224 3 13.282885 0 38.772160
3 3 4.667631 6 17.950515 0 180.974131
4 4 2.053692 10 20.004208 0 371.665151
5 5 9.813006 15 29.817213 0 3647.152301
6 6 5.074884 21 34.892097 0 18508.874743
7 7 1.526651 28 36.418749 0 28256.595196
8 8 8.519215 36 44.937963 0 240724.006055
9 9 3.543486 45 48.481450 0 853002.188425 → cumprod样本的累计积 key1 key2 key1_s key2_s key1_p key2_p
0 0.0 6.792638 0.0 6.792638 0.0 6.792638
1 1.0 6.792638 1.0 7.841661 0.0 7.125633
2 2.0 6.792638 3.0 13.282885 0.0 38.772160
3 3.0 6.792638 6.0 17.950515 0.0 180.974131
4 4.0 6.792638 10.0 20.004208 0.0 371.665151
5 5.0 9.813006 15.0 29.817213 0.0 3647.152301
6 6.0 9.813006 21.0 34.892097 0.0 18508.874743
7 7.0 9.813006 28.0 36.418749 0.0 28256.595196
8 8.0 9.813006 36.0 44.937963 0.0 240724.006055
9 9.0 9.813006 45.0 48.481450 0.0 853002.188425
key1 key2 key1_s key2_s key1_p key2_p
0 0.0 6.792638 0.0 6.792638 0.0 6.792638
1 0.0 1.049023 0.0 6.792638 0.0 6.792638
2 0.0 1.049023 0.0 6.792638 0.0 6.792638
3 0.0 1.049023 0.0 6.792638 0.0 6.792638
4 0.0 1.049023 0.0 6.792638 0.0 6.792638
5 0.0 1.049023 0.0 6.792638 0.0 6.792638
6 0.0 1.049023 0.0 6.792638 0.0 6.792638
7 0.0 1.049023 0.0 6.792638 0.0 6.792638
8 0.0 1.049023 0.0 6.792638 0.0 6.792638
9 0.0 1.049023 0.0 6.792638 0.0 6.792638 → cummax,cummin分别求累计最大值,累计最小值

4.

# 唯一值:.unique()

s = pd.Series(list('asdvasdcfgg'))
sq = s.unique()
print(s)
print(sq,type(sq))
print(pd.Series(sq))
# 得到一个唯一值数组
# 通过pd.Series重新变成新的Series sq.sort()
print(sq)
# 重新排序

输出结果:

0     a
1 s
2 d
3 v
4 a
5 s
6 d
7 c
8 f
9 g
10 g
dtype: object
['a' 's' 'd' 'v' 'c' 'f' 'g'] <class 'numpy.ndarray'>
0 a
1 s
2 d
3 v
4 c
5 f
6 g
dtype: object
['a' 'c' 'd' 'f' 'g' 's' 'v']

5.

# 值计数:.value_counts()

sc = s.value_counts(sort = False)  # 也可以这样写:pd.value_counts(sc, sort = False)
print(sc)
# 得到一个新的Series,计算出不同值出现的频率
# sort参数:排序,默认为True

输出结果:

d    2
a 2
s 2
c 1
f 1
g 2
v 1
dtype: int64

6.

# 成员资格:.isin()

s = pd.Series(np.arange(10,15))
df = pd.DataFrame({'key1':list('asdcbvasd'),
'key2':np.arange(4,13)})
print(s)
print(df)
print('-----') print(s.isin([5,14])) #判断5和14是否在里面
print(df.isin(['a','bc','',8]))
# 用[]表示
# 得到一个布尔值的Series或者Dataframe

输出结果:

0    10
1 11
2 12
3 13
4 14
dtype: int32
key1 key2
0 a 4
1 s 5
2 d 6
3 c 7
4 b 8
5 v 9
6 a 10
7 s 11
8 d 12
-----
0 False
1 False
2 False
3 False
4 True
dtype: bool
key1 key2
0 True False
1 False False
2 False False
3 False False
4 False True
5 False False
6 True False
7 False False
8 False False

课后题:

写出一个输入元素直接生成数组的代码块,然后创建一个函数,该函数功能用于判断一个Series是否是唯一值数组,返回“是”和“不是”。

import numpy as np
import pandas as pd
#练习1
ar = eval(input("请输入一组元素,以列表的形式:"))
s =pd.Series(ar)
print(s) def f(s):
s1 =s.unique()
if len(s1) == len(s):
print("该数据是唯一值Series")
else:
print("该数据不是唯一值Series") f(s)

Pandas 数值计算和统计基础的更多相关文章

  1. pandas中的数值计算及统计基础

    import pandas as pd import numpy as np df = pd.DataFrame({ 'key1': [4, 5, 3, np.nan, 2], 'key2': [1, ...

  2. 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取

    1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False)  -->> axis=1是按行来 ...

  3. Pandas之DataFrame——Part 3

    ''' [课程2.] 数值计算和统计基础 常用数学.统计方法 ''' # 基本参数:axis.skipna import numpy as np import pandas as pd df = pd ...

  4. pandas之数值计算与统计

    数值计算与统计 对于DataFrame来说,求和.最大.最小.平均等统计方法,默认是按列进行统计,即axis = 0,如果添加参数axis = 1则会按照行进行统计. 如果存在空值,在统计时默认会忽略 ...

  5. Python 数值计算库之-[Pandas](六)

  6. Linux 中的数值计算和符号计算

    不知道经常需要做科学计算的朋友们有没有这样的好奇:在 Linux 系统下使用什么工具呢?说到科学计算,首先想到的肯定是 Matlab,如果再说到符号计算,那就非 Mathematica 不可了.可惜, ...

  7. 【转载】使用Pandas创建数据透视表

    使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...

  8. python与数值计算环境搭建

    数值计算的编程的软件很多种,也见过一些编程绘图软件的对比. 利用Python进行数值计算,需要用到numpy(矩阵) ,scipy(公式符号), matplotlib(绘图)这些工具包. 1.Linu ...

  9. Python 数据处理扩展包: numpy 和 pandas 模块介绍

    一.numpy模块 NumPy(Numeric Python)模块是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list str ...

随机推荐

  1. EF Core 2.1 +数据库视图

    1.参考文档 https://stackoverflow.com/questions/36012616/working-with-sql-views-in-entity-framework-core ...

  2. BOM DOM区别 来源

    DOM 是为了操作文档出现的 API,document 是其的一个对象:BOM 是为了操作浏览器出现的 API,window 是其的一个对象. BOM是浏览器对象模型,DOM是文档对象模型,前者是对浏 ...

  3. android里的继承浅析

    先看一段代码: abstract class A{ public A(){ this.print(); } public abstract void print(); } class B extend ...

  4. System Center Configuration Manager 2016 必要条件准备篇(Part4)

    步骤4.重新启动Configuration Manager主服务器 注意:在Configuration Manager服务器(CM01)上以本地管理员身份执行以下操作 打开管理命令提示符并发出以下 ...

  5. Socket连接时,端口是怎么分配的

    socket 客户端连接socket 的端口每个是唯一的,每个新的连接,端口号+1 从1024-65534 最大到65534 然后再开始循环 中间遇到已经使用的端口就跳过

  6. 1.jdk的安装

    1.下载jdk放到某(E)盘底下的(java)某文件夹里 2.配置环境变量 (1)配置JAVA_HOME,CLASSPATH,PATH三个变量 其中JAVA_HOME必须的 JAVA_HOME=E:\ ...

  7. Verilog八线 - 三线优先编码器设计(74LS148)

    百度百科_74LS148 if语句法 //8线-3线优先编码器设计(74LS148) // //EI | A7 A6 A5 A4 A3 A2 A1 A0 | Y2 Y1 Y0 GS EO //0 | ...

  8. ODBC驱动程序丢失解决方法

    今天运行SqlDbx连接数据库的时候报错,提示没有找到相应的ODBC driver,打开ODBC管理面板一看,发现里面的驱动程序都不见了.这时想起今天卸载了一个成本核算软件后成这样的,网上搜索一下只需 ...

  9. Altium_Designer-各种布线总结

    1.常规布线:不详细说了,是个人就知道怎么弄.需要说明的是在布线过程中,可按小键盘的*键或大键盘的数字2键添加一个过孔:按L键可以切换布线层:按数字3可设定最小线宽.典型线宽.最大线宽的值进行切换. ...

  10. IOS 弹框AlterView的使用(IOS8.0以前使用)UIAlertController(IOS9.0使用)

    #pragma mark - 代理方法 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath ...