But what exactly do we mean by "gets closer to"?
https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
【将输入转化为输出:概率分布】
When we develop a model for probabilistic classification, we aim to map the model's inputs to probabilistic predictions, and we often train our model by incrementally adjusting the model's parameters so that our predictions get closer and closer to ground-truth probabilities.
In this post, we'll focus on models that assume that classes are mutually exclusive. For example, if we're interested in determining whether an image is best described as a landscape or as a house or as something else, then our model might accept an image as input and produce three numbers as output, each representing the probability of a single class.
During training, we might put in an image of a landscape, and we hope that our model produces predictions that are close to the ground-truth class probabilities y=(1.0,0.0,0.0)Ty=(1.0,0.0,0.0)T. If our model predicts a different distribution, say y^=(0.4,0.1,0.5)Ty^=(0.4,0.1,0.5)T, then we'd like to nudge the parameters so that y^y^ gets closer to yy.
【cross entropy 交叉熵 提供了一种量化的解决办法】
But what exactly do we mean by "gets closer to"? In particular, how should we measure the difference between y^y^ and yy?
This post describes one possible measure, cross entropy, and describes why it's reasonable for the task of classification.
https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
zh.wikipedia.org/wiki/相对熵
KL散度是两个概率分布P和Q差别的非对称性的度量。 KL散度是用来 度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。
en.wikipedia.org/wiki/Kullback–Leibler_divergence
In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q. By analogy with information theory, it is also called the relative entropy of P with respect to Q. In the context of coding theory, DKL(P‖Q) can be constructed as measuring the expected number of extra bits required to codesamples from P using a code optimized for Q rather than the code optimized for P.
https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
When we develop a probabilistic model over mutually exclusive classes, we need a way to measure the difference between predicted probabilities y^y^ and ground-truth probabilities yy, and during training we try to tune parameters so that this difference is minimized.
But what exactly do we mean by "gets closer to"?的更多相关文章
- CSS——关于z-index及层叠上下文(stacking context)
以下内容根据CSS规范翻译. z-index 'z-index'Value: auto | <integer> | inheritInitial: autoApplies to: posi ...
- 基于Ubuntu Hadoop的群集搭建Hive
Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...
- Java
2016-12-17 21:10:28 吉祥物:Duke(公爵) Logo:咖啡(爪哇岛盛产咖啡) An overview of the software development proce ...
- Netty实现高性能RPC服务器优化篇之消息序列化
在本人写的前一篇文章中,谈及有关如何利用Netty开发实现,高性能RPC服务器的一些设计思路.设计原理,以及具体的实现方案(具体参见:谈谈如何使用Netty开发实现高性能的RPC服务器).在文章的最后 ...
- 基于Netty打造RPC服务器设计经验谈
自从在园子里,发表了两篇如何基于Netty构建RPC服务器的文章:谈谈如何使用Netty开发实现高性能的RPC服务器.Netty实现高性能RPC服务器优化篇之消息序列化 之后,收到了很多同行.园友们热 ...
- Netty构建分布式消息队列实现原理浅析
在本人的上一篇博客文章:Netty构建分布式消息队列(AvatarMQ)设计指南之架构篇 中,重点向大家介绍了AvatarMQ主要构成模块以及目前存在的优缺点.最后以一个生产者.消费者传递消息的例子, ...
- Fedora 24中的日志管理
Introduction Log files are files that contain messages about the system, including the kernel, servi ...
- [Mahout] 完整部署过程
概述 Mahout底层依赖Hadoop,部署Mahout过程中最困难的就是Hadoop的部署 本文假设用户本身没有进行Hadoop的部署,记述部署Mahout的过程 ...
- 【java】jstack
介绍 jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项"-J-d64",Windows的jsta ...
- Underscore.js
概述 Underscore.js是一个很精干的库,压缩后只有4KB.它提供了几十种函数式编程的方法,弥补了标准库的不足,大大方便了JavaScript的编程.MVC框架Backbone.js就将这个库 ...
随机推荐
- 转 : SQL Server数据库优化经验总结
优化数据库的注意事项: 1.关键字段建立索引. 2.使用存储过程,它使SQL变得更加灵活和高效. 3.备份数据库和清除垃圾数据. 4.SQL语句语法的优化.(可以用Sybase的SQL Expert, ...
- 代码验证C#执行”文件打开关闭操作“耗时
2017-04-19 部门经理习惯用C#做数据清洗,遇到个需要验证的问题,在一个万次左右循环内对文件执行打开关闭操作,比在循环前打开文件.循环后关闭文件耗时多多少. using System; usi ...
- python学习的推荐教程
评注: 还未细看, http://www.crifan.com/files/doc/docbook/python_beginner_tutorial/release/html/python_begin ...
- 往MySQL数据库datetime类型字段中插入数据库的当前时间
代码: StringBuilder sb = new StringBuilder(); sb.append(" insert into uosdetailfile ("); sb. ...
- SQL Server“吃内存”的解决
现象:Web服务器中SQL Server占用内存非常高,加内存后,SQL Server又吃掉新加的内存,好像内存永远不够用一样. 分析:其实这并不一定是由于SQL Server活动过度造成的,在启动S ...
- STL学习笔记(已序区间算法)
针对已序区间执行的算法,执行前提是源区间必须在某个排序准则下已序. 搜寻元素(Searching) 1.检查某个元素是否存在 bool binary_search(ForwardIterator be ...
- 【Django】其他项目导入到Pycharm无法使用,报错:Error: Django is not importable in this environment
导入项目后如下:项目名称那出现一个小叉 点击启动后提示错误: 那是由于运行环境的路径没有指向python的安装路径,如下图即可解决问题
- discuz !NT 3.5 论坛整合 .net 网站用户登录,退出
using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.HtmlCont ...
- linux系统下面ftp的一些命令
service vsftpd restart重启vsftpd服务service vsftpd stop停止vsftpd服务service vsftpd start启动vsftpd服务 chkconfi ...
- Android实现夜间模式小结
随着APP实现的功能越来越丰富, 看小说看视频上网等等, 如今不少人花在手机平板等移动终端上的时间越来越长了. 但手机和平板的屏幕并不像Kindle那类电纸书的水墨屏那么耐看, 因为自发光的屏幕特性, ...