https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

【将输入转化为输出:概率分布】

When we develop a model for probabilistic classification, we aim to map the model's inputs to probabilistic predictions, and we often train our model by incrementally adjusting the model's parameters so that our predictions get closer and closer to ground-truth probabilities.

In this post, we'll focus on models that assume that classes are mutually exclusive. For example, if we're interested in determining whether an image is best described as a landscape or as a house or as something else, then our model might accept an image as input and produce three numbers as output, each representing the probability of a single class.

During training, we might put in an image of a landscape, and we hope that our model produces predictions that are close to the ground-truth class probabilities y=(1.0,0.0,0.0)Ty=(1.0,0.0,0.0)T. If our model predicts a different distribution, say y^=(0.4,0.1,0.5)Ty^=(0.4,0.1,0.5)T, then we'd like to nudge the parameters so that y^y^ gets closer to yy.

cross entropy 交叉熵 提供了一种量化的解决办法】

But what exactly do we mean by "gets closer to"? In particular, how should we measure the difference between y^y^ and yy?

This post describes one possible measure, cross entropy, and describes why it's reasonable for the task of classification.

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

zh.wikipedia.org/wiki/相对熵

KL散度是两个概率分布P和Q差别的非对称性的度量。 KL散度是用来 度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

en.wikipedia.org/wiki/Kullback–Leibler_divergence

In the context of machine learningDKL(PQ) is often called the information gain achieved if P is used instead of Q. By analogy with information theory, it is also called the relative entropy of P with respect to Q. In the context of coding theoryDKL(PQ) can be constructed as measuring the expected number of extra bits required to codesamples from P using a code optimized for Q rather than the code optimized for P.

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

When we develop a probabilistic model over mutually exclusive classes, we need a way to measure the difference between predicted probabilities y^y^ and ground-truth probabilities yy, and during training we try to tune parameters so that this difference is minimized.

But what exactly do we mean by "gets closer to"?的更多相关文章

  1. CSS——关于z-index及层叠上下文(stacking context)

    以下内容根据CSS规范翻译. z-index 'z-index'Value: auto | <integer> | inheritInitial: autoApplies to: posi ...

  2. 基于Ubuntu Hadoop的群集搭建Hive

    Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...

  3. Java

    2016-12-17  21:10:28 吉祥物:Duke(公爵)    Logo:咖啡(爪哇岛盛产咖啡)  An overview of the software development proce ...

  4. Netty实现高性能RPC服务器优化篇之消息序列化

    在本人写的前一篇文章中,谈及有关如何利用Netty开发实现,高性能RPC服务器的一些设计思路.设计原理,以及具体的实现方案(具体参见:谈谈如何使用Netty开发实现高性能的RPC服务器).在文章的最后 ...

  5. 基于Netty打造RPC服务器设计经验谈

    自从在园子里,发表了两篇如何基于Netty构建RPC服务器的文章:谈谈如何使用Netty开发实现高性能的RPC服务器.Netty实现高性能RPC服务器优化篇之消息序列化 之后,收到了很多同行.园友们热 ...

  6. Netty构建分布式消息队列实现原理浅析

    在本人的上一篇博客文章:Netty构建分布式消息队列(AvatarMQ)设计指南之架构篇 中,重点向大家介绍了AvatarMQ主要构成模块以及目前存在的优缺点.最后以一个生产者.消费者传递消息的例子, ...

  7. Fedora 24中的日志管理

    Introduction Log files are files that contain messages about the system, including the kernel, servi ...

  8. [Mahout] 完整部署过程

    概述        Mahout底层依赖Hadoop,部署Mahout过程中最困难的就是Hadoop的部署      本文假设用户本身没有进行Hadoop的部署,记述部署Mahout的过程       ...

  9. 【java】jstack

    介绍 jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项"-J-d64",Windows的jsta ...

  10. Underscore.js

    概述 Underscore.js是一个很精干的库,压缩后只有4KB.它提供了几十种函数式编程的方法,弥补了标准库的不足,大大方便了JavaScript的编程.MVC框架Backbone.js就将这个库 ...

随机推荐

  1. [转载]linux 清除系统cached

    FROM: http://cqfish.blog.51cto.com/622299/197230 linux 清除系统cached top查看系统内存使用情况   Mem:    16432180k ...

  2. Effective C++--经验条款

    高效C++ --模板与泛型编程 在C++中模板体现的是编译期多态,virtual体现的是执行期多态. 关于typename的双重含义: 在声明template參数时,不论使用keywordclass或 ...

  3. IOS 开发环境,证书和授权文件是什么?

    一.成员介绍 1.    Certification(证书) 证书是对电脑开发资格的认证,每个开发者帐号有一套,分为两种: 1)    Developer Certification(开发证书) 安装 ...

  4. Laravel5.1之表单验证

    一.生成一个验证类 1.生成 artisan make:request TestRequest 2.生成的文件在项目Http下的Requests文件夹下 3.默认生成的文件如下 class TestR ...

  5. 斯坦福《机器学习》Lesson5感想———1、成学习算法

    在前面几课里的学习算法的思路都是给定数据集以后.确定基于此数据集的最佳如果H函数,通过学习算法确定最佳如果H的各个參数,然后通过最佳如果函数H得出新的数据集的结果.在这一课里介绍了一种新的思路,它的核 ...

  6. d3系列2--api攻坚战05

    今天的内容相比之前的就有点儿难了?怂了没? 别问我为什么不讲详细内容,你写十遍自己就清楚究竟是怎么回事了,画画的事儿还是得动笔动键盘. 先看看效果图 事实上假设用笨办法一条一条画的话.也不难. 可是设 ...

  7. 后期给项目加入Git版本控制

    一.为项目加上Git 1.进入对应文件夹 2.git init(初始化一个空的代码仓库) 3.git add .(将当前目录和子目录的文件标记为要添加到代码仓库) 4.git commit -m &q ...

  8. 1 android 人脸识别

    1 https://www.google.com.hk/search?newwindow=1&safe=strict&q=android+%E5%9B%BE%E7%89%87%E4%B ...

  9. nightwatch API

    API Nightwatch的API分为四个部分 1.Expect 在browser实例上以.expect.element开头的BDD(行为驱动测试)风格的接口,0.7及以上版本nightwatch可 ...

  10. requests ssl 报错

    使用requests下载日志出现HTTPSConnectionPool(host='***', port=443): Max retries exceeded with url: ******(Cau ...