Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 4255  Solved: 2582
[Submit][Status][Discuss]

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

这题非常的妙啊。

第一眼看过去应该是P♂lya定理,但是考虑到P♂lya定理是用颜色数做底数计算的,而此题有颜色数的限制,

所以我们考虑它最原始的版本—Burnside引理

这题置换的个数直接给出了($M$)

因此我们只需要求出每个置换中不动点的方案再乘上$M$Z在模$P$意义下的逆元就行了

考虑如何求每个置换中的不动点

联想P♂lya定理。我们在每个循环节中都必须要放同样的颜色,这题也是一样的,只不过多了个数的限制

那么我们直接把个数的限制当做状态dp就行了

设$f[i][a][b]$表示前$i$个循环节,用了$a$个红颜色,$b$个蓝颜色,$c$个黄颜色

转移的时候判断当前放的个数时候大于循环节长度,背包转移

注意最初的状态也算一种方案

#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
const int MAXN = 1e5 + ;
using namespace std;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int Sr, Sb, Sg, N, M, mod, change[MAXN];
int f[][][], len[], vis[], num = ; // f[i][j][k]前i个循环节,用了j个红,k个蓝, i - j - k个绿 len[i]第i个循环节有几个元素
int F(int *a) {
memset(f, , sizeof(f));
memset(len, , sizeof(len));
memset(vis, , sizeof(vis));
num = ;
for(int i = ; i <= N; i++) {
if(!vis[i]) {
int cur = i; num++;
while(!vis[i]) len[num]++, vis[i] = , i = a[i];
}
}
f[][][] = ;
for(int i = ; i <= num; i++) {
for(int a = ; a <= Sr; a++) {
for(int b = ; b <= Sb; b++) {
int c = i - a - b, sum = ;
if(c < || c > Sg) continue;
if(a >= len[i]) sum = (sum + f[i - ][a - len[i]][b] ) % mod;
if(b >= len[i]) sum = (sum + f[i - ][a][b - len[i]] ) % mod;
if(c >= len[i]) sum = (sum + f[i - ][a][b]) % mod;
f[i][a][b] = sum % mod;
}
}
}
return f[num][Sr][Sb] % mod;
}
int inv(int a, int p, int mod) {
int base = ;
while(p) {
if(p & ) base = (base * a) % mod;
a = (a * a) % mod; p >>= ;
}
return base % mod;
}
main() {
Sr = read(); Sb = read(); Sg = read(); M = read(), mod = read();
N = Sr + Sb + Sg;
int ans = ;
for(int i = ; i <= M; i++) {
for(int j = ; j <= N; j++) change[j] = read();
ans += F(change);
}
for(int i = ; i <= N; i++) change[i] = i;
ans += F(change);
printf("%d", ans * inv(M + , mod - , mod) % mod);
}

BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)的更多相关文章

  1. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  2. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  3. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  4. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  5. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

  6. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  9. luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点

    LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...

随机推荐

  1. 如何才能够写出优美的C代码呢?

    转载自http://developer.51cto.com/art/201601/503802.htm 面向对象的语言更接近人的思维方式,而且在很大程度上降低了代码的复杂性,同时提高了代码的可读性和可 ...

  2. 在基于WCF开发的Web Service导出WSDL定义问题及自定义wsdl:port 名称

             在契约优先的Web服务开发过程中,往往是先拿到WSDL服务定义,各家开发各自的服务实现或客户端,然后互相调用.          尽管Web Service的标准已经发布很多年,但各 ...

  3. Vue Element-ui 框架:路由设置 限制文件类型 表单验证 回车提交 注意事项 监听事件

    1.验证上传文件的类型: (1)验证图片类型 <template> <el-upload class="avatar-uploader" action=" ...

  4. 微信小程序实战篇:商品属性联动选择(案例)

    本期的微信小程序实战篇来做一个电商网站经常用到的-商品属性联动选择的效果,素材参考了一点点奶茶. 效果演示:   商品属性联动.gif 代码示例 1.commodity.xml <!-- < ...

  5. dedecms无法下载远程jpeg图片 织梦不能提取文章内容中的jpeg图片生成缩略图

    文件:/dede/inc/inc_archives_functions.php 代码: preg_match_all("/(src)=[\"|'| ]{0,}([^>]*\. ...

  6. [iuud8]如何在mac下配置cocos2dx环境

    安装后xcode之后,下载cocos2dx压缩包,解压 通过中断cd到cocos2dx目录内 输入下行命令 sudo ./install-templates-xcode.sh 运行成功后打开xcode ...

  7. Mac 下显示隐藏文件或文件夹

    Mac 操作系统 隐藏显示文件 显示:defaults write com.apple.finder AppleShowAllFiles -bool true 隐藏:defaults write co ...

  8. 然之协同系统3.5(OA+CRM+CASH+TEAM)

    平台: Ubuntu 类型: 虚拟机镜像 软件包: mariadb-server 10.0.25 nginx 1.10.0 php7.0.4 collaboration commercial crm ...

  9. Lucene学习入门——核心类API

    本文讲解Lucene中,创建索引.搜索等常用到的类API 搜索操作比索引操作重要的多,因为索引文件只被创建一次,却要被搜索多次. 索引过程的核心类: 执行简单的索引过程需要如下几个类:IndexWri ...

  10. ubuntu查看nvidia显卡状态

    nvidia-smi 连续查看显卡状态 sudo watch nvidia-smi