主席树+线段树合并。

首先我们想一想如果只有一个结点的话,我们弄一个权值线段树就可以随便维护了。

那么我们可以运用差分的思想,把一个询问拆成四个操作,对于一个询问$(x, y, v)$,我们在$x$的$k$处$ + 1$,在$y$的$k$处$ + 1$,在$lca(x, y)$处$ - 1$,在$fa(lca(x, y))$处$ - 1$,那么每一个点最后的权值线段树的样子就相当于把它和它的子树中的权值线段树全部合并之后得到的线段树。

动态开点就可以了。

前置技能:线段树合并。     戳这里

这样子我们往下搜一遍把每一个点和它的儿子合并,然后记录一下答案就可以了。

不会算时间复杂度QωQ。

另外,这题数据很卡,我写了内存回收 + $queue$开了$O2$才卡过。

Code:

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int N = 1e5 + ;
const int Lg = ; int n, m, maxn = , tot = , head[N], ans[N];
int fa[N][Lg], dep[N], inx[N], iny[N], inv[N], val[N]; struct Edge {
int to, nxt;
} e[N << ]; inline void add(int from, int to) {
e[++tot].to = to;
e[tot].nxt = head[from];
head[from] = tot;
} struct Innum {
int val, id;
} in[N]; bool cmp(const Innum &x, const Innum &y) {
if(x.val != y.val) return x.val < y.val;
else return x.id < y.id;
} inline void swap(int &x, int &y) {
int t = x; x = y; y = t;
} inline void chkMax(int &x, int y) {
if(y > x) x = y;
} inline int min(int x, int y) {
return x > y ? y : x;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void discrete() {
sort(in + , in + + m, cmp);
for(int cnt = , i = ; i <= m; i++) {
if(in[i].val != in[i - ].val) ++cnt;
chkMax(maxn, cnt);
inv[in[i].id] = cnt;
val[cnt] = in[i].val;
}
} void dfs(int x, int fat, int depth) {
dep[x] = depth, fa[x][] = fat;
for(int i = ; i <= ; i++)
fa[x][i] = fa[fa[x][i - ]][i - ];
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(y == fat) continue;
dfs(y, x, depth + );
}
} inline int getLca(int x, int y) {
if(dep[x] < dep[y]) swap(x, y);
for(int i = ; i >= ; i--)
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if(x == y) return x;
for(int i = ; i >= ; i--)
if(fa[x][i] != fa[y][i])
x = fa[x][i], y = fa[y][i];
return fa[x][];
} namespace PSegT {
struct Node {
int lc, rc, sum, col;
} s[N * ]; int root[N], nodeCnt = ; queue <int> Q; inline void push(int x) {
Q.push(x);
} inline int newNode() {
if(Q.empty()) return ++nodeCnt;
else {
int res = Q.front();
Q.pop();
return res;
}
} #define lc(p) s[p].lc
#define rc(p) s[p].rc
#define sum(p) s[p].sum
#define col(p) s[p].col
#define mid ((l + r) >> 1) inline void up(int p) {
if(!p) return;
if(sum(lc(p)) < sum(rc(p))) col(p) = col(rc(p)), sum(p) = sum(rc(p));
else col(p) = col(lc(p)), sum(p) = sum(lc(p));
} void modify(int &p, int l, int r, int x, int v) {
if(!p) p = newNode();
if(l == r) {
sum(p) += v;
if(sum(p) > ) col(p) = l;
else col(p) = ;
return;
} if(x <= mid) modify(lc(p), l, mid, x, v);
else modify(rc(p), mid + , r, x, v);
up(p);
} int merge(int u, int v, int l, int r) {
if(!u || !v) return u + v;
int p = newNode();
if(l == r) {
sum(p) = sum(u) + sum(v);
if(sum(p) > ) col(p) = l;
else col(p) = ;
} else {
lc(p) = merge(lc(u), lc(v), l, mid);
rc(p) = merge(rc(u), rc(v), mid + , r);
up(p);
}
push(u), push(v);
return p;
} } using namespace PSegT; void solve(int x) {
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(y == fa[x][]) continue;
solve(y);
root[x] = merge(root[x], root[y], , maxn);
} /* printf("%d: ", x);
for(int i = 1; i <= maxn; i++)
printf("%d ", query(root[id[x] - 1], root[id[x]], 1, maxn, i));
printf("\n"); */ ans[x] = val[s[root[x]].col];
} int main() {
read(n), read(m);
for(int x, y, i = ; i < n; i++) {
read(x), read(y);
add(x, y), add(y, x);
}
dfs(, , ); // maxn = 1e5; for(int i = ; i <= m; i++) {
read(inx[i]), read(iny[i]), read(inv[i]);
in[i].id = i, in[i].val = inv[i];
}
discrete(); for(int x, y, v, z, w, i = ; i <= m; i++) {
x = inx[i], y = iny[i], v = inv[i];
z = getLca(x, y), w = fa[z][]; /* vec[x].push_back(pin(v, 1));
vec[y].push_back(pin(v, 1));
vec[z].push_back(pin(v, -1));
if(w) vec[w].push_back(pin(v, -1)); */ modify(root[x], , maxn, v, );
modify(root[y], , maxn, v, );
modify(root[z], , maxn, v, -);
if(w) modify(root[w], , maxn, v, -);
} /* printf("\n");
for(int i = 1; i <= n; i++) {
printf("%d: ", i);
for(int j = 1; j <= maxn; j++)
printf("%d ", query(root[id[i] - 1], root[id[i] + siz[i] - 1], 1, maxn, j));
printf("\n");
}
printf("\n"); */ solve(); for(int i = ; i <= n; i++)
printf("%d\n", ans[i]); return ;
}

Luogu 4556 雨天的尾巴的更多相关文章

  1. Luogu 4556 雨天的尾巴 - 启发式合并线段树

    Solution 用$col$记录 数量最多的种类, $sum$记录 种类$col$ 的数量. 然后问题就是树上链修改, 求 每个节点 数量最多的种类. 用树上差分 + 线段树合并更新即可. Code ...

  2. [luogu4556]雨天的尾巴

    [luogu4556]雨天的尾巴 luogu 发现是一顿子修改然后再询问,那么把修改树上差分一下再线段树合并 但是... 如果你只有35分... https://www.luogu.org/discu ...

  3. P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)

    P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...

  4. BZOJ 3307: 雨天的尾巴( LCA + 线段树合并 )

    路径(x, y) +z : u处+z, v处+z, lca(u,v)处-z, fa(lca)处-z, 然后dfs一遍, 用线段树合并. O(M log M + M log N). 复杂度看起来不高, ...

  5. BZOJ_3307_雨天的尾巴_线段树合并+树上差分

    BZOJ_3307_雨天的尾巴_线段树合并 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后 ...

  6. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  7. 【BZOJ 3307】 3307: 雨天的尾巴 (线段树+树链剖分)

    3307: 雨天的尾巴 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 458  Solved: 210 Description N个点,形成一个树状结 ...

  8. 洛谷 P4556 [Vani有约会]雨天的尾巴 解题报告

    P4556 [Vani有约会]雨天的尾巴 题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒 ...

  9. 【BZOJ3307】雨天的尾巴 线段树合并

    [BZOJ3307]雨天的尾巴 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多 ...

随机推荐

  1. OJ的runtime error exit code对应SIGTERM代码

    Signal Name Number Description SIGHUP 1 Hangup (POSIX) SIGINT 2 Terminal interrupt (ANSI) SIGQUIT 3 ...

  2. Docker 架构篇

    Docker 的核心组件包括: Docker 客户端 - Client Docker 服务器 - Docker daemon Docker 镜像 - Image Registry Docker 容器 ...

  3. FOJ 2213 简单几何

    题意:给你两个圆的圆心坐标和半径,判断两个圆公切线数目. 思路:考虑两个圆间公切线的情况,两个圆的位置关系分为相离,相交,外切,内切,内含,重合,公切线数分别为4,2,3,1,0,-1. #inclu ...

  4. 在macOS上使用***

    写在教程之前[转] 本教程是通用的***在macOS上的使用教程.同时作为FzVPN的设备教程补充之一,适用于macOS. 若您在使用FzVPN,请在阅读前先仔细阅读FzVPN的使用帮助:>传送 ...

  5. Symbol Table(符号表)

    一.定义 符号表是一种存储键值对的数据结构并且支持两种操作:将新的键值对插入符号表中(insert):根据给定的键值查找对应的值(search). 二.API 1.无序符号表 几个设计决策: A.泛型 ...

  6. 3.微信小程序-B站:wxml和wxss文件

    WXML WXML(WeiXin Markup Language)是微信的一套标签语言,结合基础组件.事件系统,可以构建出页面的结构. (小安娜:好像很厉害的样子,那基础组件.事件系统是什么?感觉更厉 ...

  7. Luogu P1196 [NOI2002]银河英雄传说:带权并查集

    题目链接:https://www.luogu.org/problemnew/show/P1196 题意: 有30000个战舰队列,编号1...30000. 有30000艘战舰,编号1...30000, ...

  8. 前端框架之VUE

    vue学习[第1篇]:vue之指令 vue学习[第2篇]:es6简单介绍 vue学习[第3篇]:vue之node.js的简单介绍 vue学习[第4篇]:vue 之webpack打包工具的使用 vue学 ...

  9. 使用SQL脚本创建数据库,操作主键、外键与各种约束(MS SQL Server)

    在实际开发中,可能很少人会手写sql脚本来操作数据库的种种.特别是微软的MS SQL Server数据库,它的SQL Server Management Studio对数据库的图形化操作极致简便,从而 ...

  10. Struts2 - 表单的重复提交问题

    用户重复提交表单在某些场合将会造成非常严重的后果.例如,在使用信用卡进行在线支付的时候,如果服务器的响应速度太慢,用户有可能会多次点击提交按钮,而这可能导致那张信用卡上的金额被消费了多次.因此,重复提 ...