分布式系统中全局唯一id是我们经常用到的,生成全局id方法由很多,我们选择的时候也比较纠结。每种方式都有各自的使用场景,如果我们熟悉各种方式及优缺点,使用的时候才会更方便。下面我们就一起来看一下常见的生成全局唯一id的方法

本文主要讨论

常见的生成全局唯一id有哪些?

他们各有什么优缺点?

1. 使用数据库自动增长序列实现

使用数据库的自动增长来实现,算是常见最简单的解决方案,数据库内部可以确保生成id的唯一性。

优点:

1)实现简单

2)id是有序的,对于有排序需求的比较有利

缺点:

1)依赖于数据库数据插入,性能比较低

2)对数据库有依赖,每种数据库可能实现不一样,数据库切换时候,涉及到代码的修改,不利于扩展

2. 使用UUID实现

也是比较常见的解决方案,uuid全球唯一。

优点:

1)代码简单

2)性能比较好

3)对其他无依赖,方便扩展

缺点:

1)uuid是一段很长的字符,没有排序的,无法保证按顺序递增

2)uuid比较长,存储在数据库中占用的空间也比较大,不利于检索和排序

3)生成的数据比较长,数据量大的情况下,对传输效率也会有影响

3. 使用redis实现

我们可以使用redis的原子操作** INCRINCRBY**来实现,redis性能也比较高,若单机存在性能瓶颈,无法满足业务需求,可以采用集群的方式来实现。

多个集群之间增加步长来避免生成id重复的问题,如有5台redis:

第1台生成:1、6、11、16

第2台生成:2、7、12、17

第3台生成:3、8、13、18

第4台生成:4、9、14、19

第5台生成:5、10、15、20

redis重启的时候,数据可能会丢失,可以在生成的id前面加上一个时间戳来做到唯一性。

优点:

1)性能比较高

2)生成的数据是有序的,对排序业务有利

缺点:

1)依赖于redis,需要系统引进redis组件,增加了系统的复杂性

4. 使用Twitter的snowflake算法实现

这个是twitter的一个全局唯一id生成器,结果是一个long型的ID。其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0。具体实现的代码可以参看https://github.com/twitter/snowflake

直接上代码:

package com.yjd.comm.util;/**
* Created by pc on 2017/8/16 0016.
*/ /**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeIdWorker { // ==============================Fields===========================================
/**
* 开始时间截 (2015-01-01)
*/
private final long twepoch = 1420041600000L; /**
* 机器id所占的位数
*/
private final long workerIdBits = 5L; /**
* 数据标识id所占的位数
*/
private final long datacenterIdBits = 5L; /**
* 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
*/
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /**
* 支持的最大数据标识id,结果是31
*/
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /**
* 序列在id中占的位数
*/
private final long sequenceBits = 12L; /**
* 机器ID向左移12位
*/
private final long workerIdShift = sequenceBits; /**
* 数据标识id向左移17位(12+5)
*/
private final long datacenterIdShift = sequenceBits + workerIdBits; /**
* 时间截向左移22位(5+5+12)
*/
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /**
* 工作机器ID(0~31)
*/
private long workerId; /**
* 数据中心ID(0~31)
*/
private long datacenterId; /**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L; /**
* 上次生成ID的时间截
*/
private long lastTimestamp = -1L; //==============================Constructors===================================== /**
* 构造函数
*
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} // ==============================Methods========================================== /**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} //如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} //上次生成ID的时间截
lastTimestamp = timestamp; //移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} //==============================Test============================================= /**
* 测试
*/
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(1, 1);
long startime = System.currentTimeMillis();
for (int i = 0; i < 4000000; i++) {
long id = idWorker.nextId();
// System.out.println(Long.toBinaryString(id));
// System.out.println(id);
}
System.out.println(System.currentTimeMillis() - startime);
}
}

5. 使用数据库+本地缓存实现

数据库中存储一个数字类型的字段cur_value,初始化为0,我们每次可以申请n个数字,过程:

1)创建表

CREATE TABLE `yjd_id_generator` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号',
`code` varchar(64) NOT NULL DEFAULT '' COMMENT '编码',
`cur_value` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前值',
`description` varchar(128) NOT NULL DEFAULT '' COMMENT '说明',
PRIMARY KEY (`id`),
UNIQUE KEY `idx_uq_code` (`code`)
) ENGINE=InnoDB AUTO_INCREMENT=24 DEFAULT CHARSET=utf8 COMMENT='id生成器,cur_value每次递增一定的范围'

cur_value记录当前已申请到的最大值。

  1. 通过code查询表yjd_id_generator中的记录,将cur_value更新为cur_value+n,更新成功,表示(cur_value,n]范围内的数字我们申请成功,可以使用。存在一个并发问题,需要避免多个线程同时更新的问题,我们可以通过使用cur_value作为条件进行更新,即采用乐观锁的方式进行更新,如果更新成功,表示申请成功,假如查询的cur_value值为100,那么在cur_value上递增100,此时cur_value = 200,执行如下更新操作:
update yjd_id_generator set cur_value = 200 where code = '业务编码’ and cur_value = 100;

若上面的sql执行成功,表示更新成功,上面通过乐观锁保证了并发情况下只有一个请求会执行成功。如果更新失败,表示cur_value被其他线程更新了,需要重复获取记录继续执行更新操作,类似于java中的cas操作。

  1. 把生成好的id放在本地内存缓存队列中给系统使用;效率也是非常高的。

代码如下:

public class IdGeneratorUtil {
public interface ICode {
String code();
} private static Logger logger = Logger.getLogger(IdGeneratorUtil.class);
private static final String SERVICE = "idGeneratorService";
private static Long stepValue = 100L; /**
* 禁止直接访问该list的值,通过getAllDicts()来访问
*/
private volatile static Map<String, IdGenerator> idMap = FrameUtil.newHashMap();
private volatile static Object idMapLock = new Object(); public static IIdGeneratorService getService() {
return ServiceHolder.getService(IIdGeneratorService.class, SERVICE, RpmServiceKeyEnum.RPM_PUBLIC_KEY_E.getDubboFileName(), true);
} /**
* 获取id
*
* @param code
* @return
* @throws Exception
*/
public static long getId0(ICode code) throws Exception {
return getId(code.code());
} /**
* 获取id
*
* @param code
* @return
* @throws Exception
*/
public static long getId(String code) throws Exception {
IdGenerator idGenerator = idMap.get(code);
if (idGenerator == null) {
synchronized (idMapLock) {
idGenerator = idMap.get(code);
if (idGenerator == null) {
Range range = getDbId(code);
idGenerator = new IdGenerator(range, new AtomicLong(range.getLeft()));
idMap.put(code, idGenerator);
}
}
}
long value = idGenerator.getIdValue().getAndIncrement();
if (value > idGenerator.getRange().getRight()) {
synchronized (idMapLock) {
idMap.remove(code);
}
value = getId(code);
}
return value; } private static class IdGenerator {
private Range range;
private AtomicLong idValue; public IdGenerator() {
} public IdGenerator(Range range, AtomicLong idValue) {
this.range = range;
this.idValue = idValue;
} public Range getRange() {
return range;
} public void setRange(Range range) {
this.range = range;
} public AtomicLong getIdValue() {
return idValue;
} public void setIdValue(AtomicLong idValue) {
this.idValue = idValue;
}
} private static class Range {
private long left;
private long right; private Range(Builder builder) {
setLeft(builder.left);
setRight(builder.right);
} public static Builder newBuilder() {
return new Builder();
} public long getLeft() {
return left;
} public void setLeft(long left) {
this.left = left;
} public long getRight() {
return right;
} public void setRight(long right) {
this.right = right;
} public static final class Builder {
private long left;
private long right; private Builder() {
} public Builder left(long val) {
left = val;
return this;
} public Builder right(long val) {
right = val;
return this;
} public Range build() {
return new Range(this);
}
}
} private static Range getDbId(String code) throws Exception {
IIdGeneratorService service = getService();
IdGeneratorModel model = service.getModelOne(FrameUtil.newHashMap("code", code), DbWREnums.WRITE);
long left = 0, right = 0;
if (model == null) {
left = 1;
right = left + stepValue - 1;
model = new IdGeneratorModel();
model.setCode(code);
model.setCur_value(right);
service.insert(model);
} else {
while (true) {
Long cur_value = model.getCur_value();
left = cur_value + 1;
right = left + stepValue - 1;
long where_cur_value = cur_value;
if (service.updateByMap(FrameUtil.newHashMap("id", model.getId(), "cur_value", right, "where_cur_value", where_cur_value)) == 1) {
break;
}
model = service.getModelOne(FrameUtil.newHashMap("code", code), DbWREnums.WRITE);
}
}
return Range.newBuilder().left(left).right(right).build();
}
}

优点:

1)性能比较高

2)生成的数据是有序的,对排序业务有利

缺点:

1)依赖于数据库

总结

本文介绍了5中方式供大家选择,大家如果有其他方式可以分享交流。

可以关注公众号:路人甲Java,获取年薪50万课程,获取最新文章。

常见的生成全局唯一id有哪些?他们各有什么优缺点?的更多相关文章

  1. 如何在高并发分布式系统中生成全局唯一Id

    月整理出来,有兴趣的园友可以关注下我的博客. 分享原由,最近公司用到,并且在找最合适的方案,希望大家多参与讨论和提出新方案.我和我的小伙伴们也讨论了这个主题,我受益匪浅啊…… 博文示例: 1.     ...

  2. 如何在高并发分布式系统中生成全局唯一Id(转)

    http://www.cnblogs.com/heyuquan/p/global-guid-identity-maxId.html 又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文, ...

  3. (转)如何在高并发分布式系统中生成全局唯一Id

    又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文,后续再奉上.最近还写了一个发邮件的组件以及性能测试请看 <NET开发邮件发送功能的全面教程(含邮件组件源码)> ,还弄了 ...

  4. 生成全局唯一ID

    在实际业务处理中,有时需要生成全局唯一ID来区别同类型的不同事物,介绍一下几种方式及其C++实现 //获取全局唯一ID //server_id为服务的id,因当同一个服务部署在多个服务器上时,需要区别 ...

  5. 面试官:如何在分布式场景下生成全局唯一 ID?

    在分布式系统中,有一些场景需要使用全局唯一 ID ,可以和业务场景有关,比如支付流水号,也可以和业务场景无关,比如分库分表后需要有一个全局唯一 ID,或者用作事务版本号.分布式链路追踪等等,好的全局唯 ...

  6. 高并发分布式系统中生成全局唯一Id汇总

    数据在分片时,典型的是分库分表,就有一个全局ID生成的问题.单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:   1 不能有单点故障.   2 以时间为序,或者ID里包含时间 ...

  7. 游戏服务器生成全局唯一ID的几种方法

    在服务器系统开发时,为了适应数据大并发的请求,我们往往需要对数据进行异步存储,特别是在做分布式系统时,这个时候就不能等待插入数据库返回了取自动id了,而是需要在插入数据库之前生成一个全局的唯一id,使 ...

  8. SnowFlake 生成全局唯一id

    public class SnowFlakeUtil { private long workerId; private long datacenterId; private long sequence ...

  9. 雪花算法生成全局唯一ID

    系统中某些场景少不了全局唯一ID的使用,来保证数据的唯一性.除了通过数据库自带的自增id来保证 id 的唯一性,通常为了保证的数据的可移植性会选择通过程序生成全局唯一 id.百度了不少php相关的生成 ...

随机推荐

  1. CSS3新增的伪类

    Element1 ~ element2:选择前面有element1的所有element2元素 [attr ^= val] 属性值以val开头的元素 [attr $= val] 属性值以val结尾的元素 ...

  2. 差一点搞混了Transactional注解

    今天给我的Srping业务层加如下Service和Transactional注解: @Service @Scope(BeanDefinition.SCOPE_SINGLETON) @Transacti ...

  3. ps查看进程

    ps:要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而ps命令就是最基本同时也是非常强大的进程查看命令.使用该命令可以确定有哪些进程正在运行和运行的状态.进程是否结束. ...

  4. [Uva12260]Free Goodies(dp+贪心)

    解题关键:先对p进行排序,消除p的影响,然后对w进行01背包即可.注意p对w的约束.j<=(cur+1)/2 #include<cstdio> #include<cstring ...

  5. GET POST区别不同情况

    相信大家在面试的时候经常会被问到:GET与POST有什么区别吧?你是怎么回答的呢?POST比GEt安全?GET有URL的长度限制而POST没有或者很大?GET通过URL或者Cookie传参数,POST ...

  6. Linux 静态库(.a)转换为动态库(.so)

    Linux 静态库转换为动态库 参考 http://blog.csdn.net/moxuansheng/article/details/5812410 首先将.a文件转为.so文件是可以实现的 原因是 ...

  7. 阶段4-独挡一面\项目-基于视频压缩的实时监控系统\Sprint1-基于Epoll架构的采集端程序框架设计\第2课-基于Epoll的采集端程序框架设计

    回顾之前的整个程序架构 把epoll机制应用到这个架构上去 下面主要去分析我们的系统中有没有需要等待的事件,先看看采集子系统 在采集子系统当中,摄像头有数据,摄像头采集到图像数据可以作为一个等待事件. ...

  8. 【leetcode 114. 二叉树展开为链表】解题报告

    思路:递归,将左子树变成单链表形式,再将右子树变成单链表形式,最后将左子树单链表的末端连接到右子树单链表表头,将根节点的左孩子置空 void flatten(TreeNode* root) { if ...

  9. mysql中数据库与数据表编码格式的查看、创建及修改

    一.查看数据库编码格式 ? 1 mysql> show variables like 'character_set_database'; 二.查看数据表的编码格式 ? 1 mysql> s ...

  10. PAT1060【大模拟啊】

    怎么麻烦怎么来了??? 提供几个案例: 5 0.00001 0.00001 0 0.0 0.0222 1 0.001 0.2000 2 005.06 0.230 1 00.020 0 贴份代码跑.. ...