BZOJ 2212

从下到上线段树合并。

考虑到每一个子树内部产生的贡献不可能通过换儿子消除,所以一次更换只要看看把哪个儿子放在左边产生的逆序对数少就可以了。

逆序对数可以在线段树合并的时候顺便算出来。

由于只有叶子结点有权值 + 二叉树的特性,大大方便了这道题的代码和细节处理。

注意点数总共要开到$2 * n$。

时间复杂度$O(nlogn)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 4e5 + ; int m, n = , rt = ;
ll ans = 0LL; struct Node {
int lc, rc, w;
} a[N]; inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline ll min(ll x, ll y) {
return x > y ? y : x;
} void build(int &now) {
now = ++n;
read(a[now].w);
if(a[now].w) return;
build(a[now].lc), build(a[now].rc);
} namespace SegT {
struct Node {
int lc, rc;
ll siz;
} s[N * ]; int sta[N * ], top = , root[N], nodeCnt = ;
ll res1, res2; inline void push(int now) {
sta[++top] = now;
} inline int newNode() {
if(top) return sta[top--];
else return ++nodeCnt;
} #define lc(p) s[p].lc
#define rc(p) s[p].rc
#define siz(p) s[p].siz
#define mid ((l + r) >> 1) inline void up(int p) {
if(!p) return;
siz(p) = siz(lc(p)) + siz(rc(p));
} void ins(int &p, int l, int r, int x) {
if(!p) p = newNode();
++siz(p);
if(l == r) return; if(x <= mid) ins(lc(p), l, mid, x);
else ins(rc(p), mid + , r, x);
} int merge(int u, int v, int l, int r) {
if(!u || !v) return u + v; res1 += siz(rc(u)) * siz(lc(v));
res2 += siz(rc(v)) * siz(lc(u)); int p = newNode();
if(l == r) siz(p) = siz(u) + siz(v);
else {
lc(p) = merge(lc(u), lc(v), l, mid);
rc(p) = merge(rc(u), rc(v), mid + , r);
up(p);
}
push(u), push(v);
return p;
} void print(int p, int l, int r) {
if(l == r) {
printf("%lld", siz(p));
return;
} print(lc(p), l, mid), print(rc(p), mid + , r);
} inline void deb(int x) {
print(root[x], , m);
} #undef lc
#undef rc
#undef mid
#undef siz } using namespace SegT; void solve(int now) {
if(a[now].w) return;
solve(a[now].lc), solve(a[now].rc); res1 = res2 = 0LL;
root[now] = merge(root[a[now].lc], root[a[now].rc], , m);
ans += min(res1, res2);
} int main() {
read(m);
build(rt); /* for(int i = 1; i <= n; i++)
printf("%d %d %d\n", a[i].lc, a[i].rc, a[i].w);
printf("\n"); */ for(int i = ; i <= n; i++)
if(a[i].w) ins(root[i], , m, a[i].w); /* for(int i = 1; i <= n; i++) {
if(!a[i].w) continue;
deb(i);
printf("\n");
} */ solve(rt); printf("%lld\n", ans);
return ;
}

Luogu 3521 [POI2011]ROT-Tree Rotations的更多相关文章

  1. BZOJ2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 391  Solved: 127[Submi ...

  2. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  3. 2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations https://www.lydsy.com/JudgeOnline/problem.php?id=2212 分析: 线段树合并. 首先对每个 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. POI2011 Tree Rotations

    POI2011 Tree Rotations 给定一个n<=2e5个叶子的二叉树,可以交换每个点的左右子树.要求前序遍历叶子的逆序对最少. 由于对于当前结点x,交换左右子树,对于范围之外的逆序对 ...

  6. [bzoj3702/2212][Poi2011]二叉树/Tree Rotations_线段树

    二叉树 Tree Rotations bzoj-3702 bzoj-2212 Poi-2011 题目大意:现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有n个叶子节点,满足 ...

  7. bzoj 2212 Tree Rotations

    bzoj 2212 Tree Rotations 考虑一个子树 \(x\) 的左右儿子分别为 \(ls,rs\) .那么子树 \(x\) 内的逆序对数就是 \(ls\) 内的逆序对数,\(rs\) 内 ...

  8. Luogu 3690 Link Cut Tree

    Luogu 3690 Link Cut Tree \(LCT\) 模板题.可以参考讲解和这份码风(个人认为)良好的代码. 注意用 \(set\) 来维护实际图中两点是否有直接连边,否则无脑 \(Lin ...

  9. 线段树合并(【POI2011】ROT-Tree Rotations)

    线段树合并([POI2011]ROT-Tree Rotations) 题意 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有nn个叶子节点,满足这些权值为1-n1-n的一个 ...

随机推荐

  1. C#中的索引器的简单理解和用法

    索引器是一种特殊的类成员,它能够让对象以类似数组的方式来存取,使程序看起来更为直观,更容易编写. 1.索引器的定义 C#中的类成员可以是任意类型,包括数组和集合.当一个类包含了数组和集合成员时,索引器 ...

  2. hdu-2609-How many(串的最小表示)

    题目链接 /* Name:hdu-2609-How many Copyright: Author: Date: 2018/4/24 15:47:49 Description: 串的最小表示 求出每个串 ...

  3. 20165210 Java第五周学习总结

    20165210 Java第五周学习总结 教材学习内容 - 第七章学习总结 内部类: 内部类的外嵌类的成员变量在内部类中仍然有效,内部类中的方法也可以调用外嵌类中的方法. 内部类的类体中不可以声明类变 ...

  4. tar 多文件解压压缩

    tar 多文件解压:因为tar -zxvf一次值能解压一个文件,所以用xargs -n1 .先查找 ls *gz | xargs -n1 tar -zxvf .要解压的文件在list中 cat lis ...

  5. loj#6566. 月之都的密码

    搜交互题搜到的... 竟然还有这么水的交互题,赶紧过了再说 交互库里有一个 $[1,n]$ 到 $[1,n]$ 的双射 你可以调用 $encode(k,a[])$ 询问左边的一个大小为 $k$ 的集合 ...

  6. verilog学习五点经验分享

    1.规范很重要工作过的朋友肯定知道,公司里是很强调规范的,特别是对于大的设计(无论软件还是硬件),不按照规范走几乎是不可实现的.逻辑设计也是这样:如果不按规范做的话,过一个月后调试时发现有错,回头再看 ...

  7. WebSocket --为什么引入WebSocket协议

    Browser已经支持http协议,为什么还要开发一种新的WebSocket协议呢?我们知道http协议是一种单向的网络协议,在建立连接后,它只允许Browser/UA(UserAgent)向WebS ...

  8. Java创建AD(Active Directory)域控制器用户 (未测)

    import java.util.Hashtable; import javax.naming.ldap.*; import javax.naming.directory.*; import java ...

  9. GXT4.0 BorderLayoutContainer布局

    T字型布局. @Override public void onModuleLoad() { BorderLayoutContainer con = new BorderLayoutContainer( ...

  10. Windows10:怎么安装whl文件

    whl格式本质上是一个压缩包,里面包含了py文件,以及经过编译的pyd文件.使得可以在不具备编译环境的情况下,选择合适自己的python环境进行安装.安装方法很简单,进入命令行输入pip instal ...