Time limit: 7s Source limit: 50000B Memory limit: 256MB

The first line contains the number of test cases T. T lines follow, one corresponding to each test case, containing
2 integers: N and P. 
 
OUTPUT



 
EXPLANATION
In the first test case, the possible ways of division are (1,1,1), (1,2), (2,1) and (3) which have values
1, 2, 2, 3 and hence, there are 3 distinct values. 
In the second test case, the numbers 1 to 6 constitute the answer and they can be obtained in the following
ways: 
1=1*1*1*1*1 
2=2*1*1*1 
3=3*1*1 
4=4*1 
5=5 
6=2*3

题意:有n个石子,可以分成任意堆,每一种分法的值为每一堆的石子数量的乘积。求一共可以分成多少个不同的乘积。
分析:最终的乘积除了1以外,都可以分解成素数相乘或者素数相乘再与1相乘的形式。因为n不超过70,所以我们可以先找出不超过70的所有素数,然后从这些素数中进行搜索求解即可。为了方便求出不同的乘积有多少个,可以用STL里面的set来统计不同的数有多少个。
 
 
 
#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>
using namespace std;
typedef long long LL;
set<LL> s;
int prime[] = {, , , , , , , , , , , , , , , , , , , , };
int n, p; void dfs(int num, int cur, LL ans)
{
s.insert(ans);
if(cur < prime[num]) return ;
dfs(num, cur - prime[num], ans * prime[num] % p); //要第num个素数
dfs(num+, cur, ans); //不要第num个素数
} int main()
{
int T, i, j;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&p);
s.clear();
dfs(, n, );
printf("%d\n", s.size());
}
printf("\n");
}

SPOJ AMR10I Dividing Stones的更多相关文章

  1. SPOJ AMR10I Dividing Stones --DFS

    题意:给n个石头,分成一些部分(最多n部分,随便分),问分完后每部分的数量的乘积有多少种情况. 分析:可以看出,其实每个乘积都可以分解为素数的乘积,比如乘积为4,虽然可以分解为4*1,但是更可以分解为 ...

  2. I - Dividing Stones

    Description There are N stones, which can be divided into some piles arbitrarily. Let the value of e ...

  3. SPOJ AMR10I 递归

    DES :给你n 块石头.不会超过70.把它们分成n堆.每堆里的石头数做积.问共有多少个数.最终的结果除了1之外都能分解成素数相乘或者素数相乘再乘1.所以可以找到所有不超过70的素数然后进行深搜. 感 ...

  4. Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论

    1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 130  Solved: 88[Submi ...

  5. UVa 12525 Boxes and Stones (dp 博弈)

    Boxes and Stones Paul and Carole like to play a game with S stones and B boxes numbered from 1 to B. ...

  6. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  7. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

  8. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  9. 【填坑向】spoj COT/bzoj2588 Count on a tree

    这题是学主席树的时候就想写的,,, 但是当时没写(懒) 现在来填坑 = =日常调半天lca(考虑以后背板) 主席树还是蛮好写的,但是代码出现重复,不太好,导致调试的时候心里没底(虽然事实证明主席树部分 ...

随机推荐

  1. 基于Jquery的原生态dialog弹出窗口-zapWindow

    看到boss系统搓B的填出窗口,不忍直视,坚决的换掉! 采用zapwindow(来源不清楚了,总之是前人留下的),做了修改,当前支持三类弹出类型: 1. 指定url 2. 自定义html 3. 指定D ...

  2. JDBC-Hibernate-Mybatis

    JDBC sql语句和Java代码混在了一起 Hibernate 自动生成sql语句 Mybatis 将sql语句写在xml文件中,使用时动态生成

  3. 【Java】异常 —— throw, throws, try catch 相关内容

    嗯……面试考到了这个,又是一个如无意外 那么接下来就总结吧 一.什么是异常 程序运行过程中发生的异常事件. RuntimeException通常是因为编程员因为疏忽没有检查而引起的错误. 二.Exce ...

  4. 【图论 思维】cf715B. Complete The Graph加强

    zzq讲的杂题 题目大意 有一张$n​$个点$m​$条边的简单正权无向图,$S​$到$T​$的最短路为$L​$,现在有一些边的边权未知,请输出任意一种满足题意的方案. $n,m\le 500000​$ ...

  5. asciinema使用

    asciinema让您轻松记录终端会话,并在终端和网页浏览器中重播它们. 安装最新版本: sapt-get install asciinema 记录你的第一个终端视频: asciinema rec f ...

  6. vue学习笔记-:class

    当items.state为true时使用class='rad2state',否则为rad2(默认).

  7. PHP 多字节处理函数 mb_strlen

    一.前言 个人认为,PHP是世界上最好的语言.  二.介绍 查看yii2底层源码, 发现 mb_strlen($str, '8bit') , 此函数的不是PHP的核心函数, 所以需要开启对应的扩展.  ...

  8. PHP 7.1版本 微信安全模式消息接受

    token 验证就不多讲了 重点说一下PHP7.1版本的加密解密算法 php7.1发布后新特性吸引了不少PHPer,大家都在讨论新特性带来的好处与便利. 但是从php7.0 升级到 php7.1 废弃 ...

  9. 4x4矩阵键盘 扫描程序

    一:不排除第四位异常处理 uchar JuzhenkeyScan() { // P3=0xfe; // temp=P3; // while(temp!=0xfe) // { // temp=P3; / ...

  10. html---Web Storage存储

    在HTML5中,除了Canvas元素之外,另一个新增的非常重要的功能是可以在客户端本地保存数据的Web Storage功能,之前可以使用Cookies在客户端保存如用户名等简单用户信息,但通过长期使用 ...