题目链接

BZOJ4824

题解

观察出题目中的关系实际上是完全二叉树的父子关系

我们设\(f[i][j]\)为以\(i\)为根的节点在其子树中排名为\(j\)的方案数

转移时,枚举左右子树分别有几个节点比\(i\)小,进行转移

乍一看是\(O(n^3)\)的,但其复杂度分析和某一题很像

就是在根处枚举两个子树大小,实质上就等于枚举任意两点\(lca\),是\(O(n^2)\)的

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 205,maxm = 100005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL C[maxn][maxn],f[maxn][maxn],siz[maxn],n,typ[maxn];
LL suml[maxn][maxn],sumr[maxn][maxn];
char s[maxn];
void init(){
for (int i = 0; i <= 100; i++){
C[i][0] = C[i][i] = 1;
for (int j = 1; j <= (i >> 1); j++)
C[i][j] = C[i][i - j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
}
void dfs(int u){
if (u > n) return;
dfs(ls); dfs(rs);
siz[u] = siz[ls] + 1 + siz[rs];
if (ls > n) f[u][1] = 1;
else if (rs > n){
for (int i = 0; i <= siz[ls]; i++)
if (!typ[ls]) f[u][i + 1] = sumr[ls][i + 1];
else f[u][i + 1] = suml[ls][i];
}
else {
LL t1,t2;
for (int i = 0; i <= siz[ls]; i++){
if (!typ[ls]) t1 = sumr[ls][i + 1];
else t1 = suml[ls][i];
for (int j = 0; j <= siz[rs]; j++){
if (!typ[rs]) t2 = sumr[rs][j + 1];
else t2 = suml[rs][j];
f[u][i + j + 1] = (f[u][i + j + 1] + C[i + j][i] * C[siz[u] - (i + j + 1)][siz[ls] - i] % P * t1 % P * t2 % P) % P;
}
}
}
for (int i = 1; i <= n ; i++) suml[u][i] = (suml[u][i - 1] + f[u][i]) % P;
for (int i = n; i >= 0; i--) sumr[u][i] = (sumr[u][i + 1] + f[u][i]) % P;
}
int main(){
init();
n = read();
scanf("%s",s + 2);
for (int i = 2; i <= n; i++)
typ[i] = s[i] == '<' ? 0 : 1;
dfs(1);
printf("%lld\n",suml[1][n]);
return 0;
}

BZOJ4824 [Cqoi2017]老C的键盘 【树形dp】的更多相关文章

  1. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

  2. [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 218  Solved: 171[Submit][Statu ...

  3. BZOJ 4824 [Cqoi2017]老C的键盘 ——树形DP

    每一个限制条件相当于一条有向边, 忽略边的方向,就成了一道裸的树形DP题 同BZOJ3167 唯一的区别就是这个$O(n^3)$能过 #include <map> #include < ...

  4. [bzoj4824][Cqoi2017]老C的键盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...

  5. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  6. [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘

    Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...

  7. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

  8. Luogu P3757 [CQOI2017]老C的键盘

    题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...

  9. 洛谷 P3757 [CQOI2017]老C的键盘

    题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...

随机推荐

  1. (排班表一)使用SQL语句使数据从坚向排列转化成横向排列

    知识重点: 1.extract(day from schedule01::timestamp)=13 Extract 属于 SQL 的 DML(即数据库管理语言)函数,同样,InterBase 也支持 ...

  2. HDU 1084 What Is Your Grade?(排序)

    题目在这里:1084 题目描述: “Point, point, life of student!” This is a ballad(歌谣)well known in colleges, and yo ...

  3. PL/sql中如何声明变量,常量,控制语句及for,loop,while和顺序控制的使用

    pl/sql 什么是PL/SQL PL/SQL是结合oracle过程语言和机构化查询运行(SQL) 的一种扩展语言.使用PL/SQL可以编写具有很多高级功能的程序,有以下优点 PL/SOL可以采用过程 ...

  4. Shell学习——数值运算

    在Bash shell中,可以利用let.(( )).[]执行基本的算术操作,在高级操作时,使用expr和bc两个工具1.let[root@client02 ~]# no1=4[root@client ...

  5. linux学习(2)——文件和目录管理

    (二) 一:绝对路径和相对路径                                                                                     ...

  6. windows系统下用VScode配置远程编辑服务器文件的环境!通过Rmate方法

    虽然公司电脑win可以通过Xshell通过SSH远程连接家中内网linux服务器了,但是只能用vim编辑文件有点不爽. 于是上网查询,windows下使用vscode远程编辑服务器文件的办法.参照博文 ...

  7. python flask学习第2天 URL中两种方式传参

    新创建项目   自己写个url映射到自定义的视图函数 在url中传递参数 app.py from flask import Flask app = Flask(__name__) @app.route ...

  8. 十五、mac 中登陆mysql忘记密码解决办法

    mac 中登陆mysql忘记密码解决办法 1.打开终端,输入命令:cd /usr/local/mysql/bin 2.mysql -uroot -p,用这条命令登陆时报错信息: 报错:Enter pa ...

  9. runloop的mode作用是什么?

    用来控制一些特殊操作只能在指定模式下运行,一般可以通过指定操作的运行mode来控制执行时机,以提高用户体验 系统默认注册了5个Mode kCFRunLoopDefaultMode:App的默认Mode ...

  10. ARC下还会存在内存泄露吗?

    1.第三方框架不正当使用.2.block,delegate,NSTimer循环使用.3.非oc对象的内存处理.4.地图类处理.5.大次数循环内存暴涨. 非oc对象的释放: 例如使用CGImageRel ...