10.建立联系(外键)

是时候考虑怎样映射和查询一个和Users表关联的第二张表了。假设我们系统的用户可以存储任意数量的email地址。我们需要定义一个新表AddressUser相关联。

from sqlalchemyimport ForeignKey

from sqlalchemy.ormimport relationship, backref
class Address(Base):
__tablename__ = 'addresses'
id= Column(Integer, primary_key=True)
email_address = Column(String, nullable=False)
user_id = Column(Integer, ForeignKey('users.id'))
user = relationship("User", backref=backref('addresses',order_by=id))
def__repr__(self):
	return"<Address(email_address='%s')>"%self.email_address

构造类和外键简单,就不过多赘述。主要说明以下relationship()函数:这个函数告诉ORMAddress类应该和User类连接起来,通过使用addresses.userrelationship()使用外键明确这两张表的关系。决定Adderess.user属性是多对一的。relationship()的子函数backref()提供表达反向关系的细节:relationship()对象的集合被User.address引用。多对一的反向关系总是一对多。更多的细节参考Basic RelRational Patterns

这两个互补关系:Address.userUser.addresses被称为双向关系。这是SQLAlchemy ORM的一个非常关键的功能。更多关系backref的细节参见Linking Relationships with Backref

假设声明的方法已经开始使用,relationship()中和其他类关联的参数可以通过strings指定。在上文的User类中,一旦所有映射成功,为了产生实际的参数,这些字符串会被当做Python的表达式。下面是一个在User类中创建双向联系的例子:

class User(Base):
addresses = relationship("Address", order_by="Address.id", backref="user")

一些知识:

在大多数的外键约束(尽管不是所有的)关系数据库只能链接到一个主键列,或具有唯一约束的列。

外键约束如果是指向多个列的主键,并且它本身也具有多列,这种被称为“复合外键”。

外键列可以自动更新自己来相应它所引用的行或者列。这被称为级联,是一种建立在关系数据库的功能。

外键可以参考自己的表格。这种被称为“自引”外键。

我们需要在数据库中创建一个addresses表,所以我们会创建另一个元数据,这将会跳过已经创建的表。

11.操作主外键关联的对象

现在我们已经在User类中创建了一个空的addresser集合,可变集合类型,例如setdict,都可以用,但是默认的集合类型是list

jack = User(name='jack', fullname='Jack Bean', password='gjffdd')
jack.addresses
[]

现在可以直接在User对象中添加Address对象。只需要指定一个完整的列表:

jack.addresses = [Address(email_address='jack@google.com'),Address(email_address='j25@yahoo.com')]
当使用双向关系时,元素在一个类中被添加后便会自动在另一个类中添加。这种行为发生在Python的更改事件属性中而不是用SQL语句:
>>> jack.addresses[]
<Address(email_address='j25@yahoo.com')>
>>> jack.addresses[].user
<User(name='jack', fullname='Jack Bean', password='gjffdd')>
把jack提交到数据库中,再次查询Jack,(No SQL is yet issued for Jack’s addresses:)这句实在是翻译不了了,看看代码就明白是什么意思:
>>> jack = session.query(User).\
...
filter_by(name='jack').one()
>>> jack
<User(name='jack',fullname='Jack Bean', password='gjffdd')>

>>>jack.addresses
[<Address(email_address='jack@google.com')>,
<Address(email_address='j25@yahoo.com')>]
当我们访问uaddresses集合时,SQL会被突然执行,这是一个延迟加载(lazy loading)关系的典型例子。现在addresses集合加载完成并且可以像对待普通列表一样对其进行操作。以后我们会优化这种加载方式。
12.使用JOINS查询
现在我们有了两张表,可以进行更多的查询操作,特别是怎样对两张表同时进行查询,Wikipediapage on SQL JOIN提供了很详细的说明,其中一些我们将在这里说明。之前用Query.filter()时,我们已经用过JOIN了,filter是一种简单的隐式join:
>>>for u, a in session.query(User, Address).filter(User.id==Address.user_id).filter(Address.email_address=='jack@google.com').all():   
    print u
    print a
<User(name='jack',fullname='JackBean', password='gjffdd')>
<Address(email_address='jack@google.com')>
用Query.join()方法会更加简单:
>>>session.query(User).join(Address).\
...
filter(Address.email_address=='jack@google.com').\
...
all()
[<User(name='jack',fullname='JackBean', password='gjffdd')>]
之所以Query.join()知道怎么join两张表是因为它们之间只有一个外键。如果两张表中没有外键或者有一个以上的外键,当下列几种形式使用的时候,Query.join()可以表现的更好:
query.join(Address,User.id==Address.user_id)# 明确的条件
query.join(User.addresses)# 指定从左到右的关系
query.join(Address,User.addresses)    #同样,有明确的目标
query.join('addresses') # 同样,使用字符串
	outerjoin()和join()用法相同
query.outerjoin(User.addresses)# LEFT OUTER JOIN
12.1使用别名
当在多个表中查询时,如果同一张表需要被引用好几次,SQL通常要求对这个表起一个别名,因此,SQL可以区分对这个表进行的其他操作。Query也支持别名的操作。下面我们joinAddress实体两次,找到同时拥有两个不同email的用户:
>>>from sqlalchemy.ormimport aliased
>>>adalias1 = aliased(Address)
>>>adalias2 = aliased(Address)
>>>for username, email1, email2 in\
...
session.query(User.name,adalias1.email_address,adalias2.email_address).\
...
join(adalias1, User.addresses).\
...
join(adalias2, User.addresses).\
...
filter(adalias1.email_address=='jack@google.com').\
...
filter(adalias2.email_address=='j25@yahoo.com'):
...
print username, email1,
email2
jack
jack@google.com j25@yahoo.com
12.1使用子查询(暂时理解不了啊,多看代码研究吧:()
from sqlalchemy.sqlimport func
stmt = session.query(Address.user_id,func.count('*').\
...
label('address_count')).\
...
group_by(Address.user_id).subquery()
>>>
for u, count in session.query(User,stmt.c.address_count).\
...
outerjoin(stmt, User.id==stmt.c.user_id).order_by(User.id):
    print u, count
<User(name='ed',fullname='EdJones', password='f8s7ccs')>
None
<User(name='wendy',fullname='Wendy Williams', password='foobar')>
None
<User(name='mary',fullname='Mary Contrary', password='xxg527')>
None
<User(name='fred',fullname='Fred Flinstone', password='blah')>
None
<User(name='jack',fullname='Jack Bean', password='gjffdd')>
12.2从子查询中选择实体?
上面的代码中我们只返回了包含子查询的一个列的结果。如果想要子查询映射到一个实体的话,使用aliased()设置一个要映射类的子查询别名:
>>>
stmt = session.query(Address).\
...
filter(Address.email_address!= 'j25@yahoo.com').\
...
subquery()
>>>
adalias = aliased(Address, stmt)
#?为什么有两个参数?
>>>
for user, address in session.query(User, adalias).\
...
join(adalias, User.addresses):
...
print user
...
print address
<User(name='jack',fullname='Jack Bean', password='gjffdd')>
<Address(email_address='jack@google.com')>

12.3使用EXISTS(存在?)

如果表达式返回任何行EXISTS为真,这是一个布尔值。它可以用在jions中,也可以用来定位在一个关系表中没有相应行的情况:

>>>from sqlalchemy.sqlimport exists
>>>
stmt = exists().where(Address.user_id==User.id)
>>>for name, in session.query(User.name).filter(stmt):
    print name
jack

等价于:

>>>for name, in session.query(User.name).\
...
  filter(User.addresses.any()):
...
print name
jack

any()限制行匹配:

>>>for name, in session.query(User.name).\
...

filter(User.addresses.any(Address.email_address.like('%google%'))):
...
print name
jack

has()any()一样在应对多对一关系的情况下(注意“~“意味着”NOT”

>>> session.query(Address).\
...
filter(~Address.user.has(User.name=='jack')).all()
[]

12.4 常见的关系运算符

== = None 都是用在多对一中,而contains()用在一对多的集合中:

query.filter(Address.user == someuser)
query.filter(User.addresses.contains(someaddress))

Any()(用于集合中):

query.filter(User.addresses.any(Address.email_address == 'bar'))#also takes keyword arguments:
query.filter(User.addresses.any(email_address='bar'))

as()(用在标量?不在集合中):

query.filter(Address.user.has(name='ed'))

Query.with_parent()(所有关系都适用):

session.query(Address).with_parent(someuser,'addresses')

13 预先加载(跟性能有关)和lazy loading相对,建议直接查看文档吧

待补充。。。

SQLAlchemy技术文档(中文版)(中)的更多相关文章

  1. 【SQLAlchemy】SQLAlchemy技术文档(中文版)(中)

    10.建立联系(外键) 是时候考虑怎样映射和查询一个和Users表关联的第二张表了.假设我们系统的用户可以存储任意数量的email地址.我们需要定义一个新表Address与User相关联. from ...

  2. SQLAlchemy技术文档(中文版)(全)

    原文链接:http://www.cnblogs.com/iwangzc/p/4112078.html(感谢作者的分享) sqlalchemy 官方文档:http://docs.sqlalchemy.o ...

  3. 常用控件产品官方文档/手册/API列表 c#控件文档API列表 asp.net控件产品技术文档中文版

    .netCHARTING报表图表控件 文档帮助手册Ab3d.PowerToys 文档帮助手册Ab3d.Reader3ds 文档帮助手册ABViewer 文档帮助手册 (工程图纸文档管理系统)Activ ...

  4. SQLAlchemy技术文档(中文版)(上)

    在学习SQLAlchemy的过程中,好多时候需要查官方Tutorial,发现网上并没有完整的中文版,于是利用这两天空余时间粗略翻译了一下. 翻译效果很差....但也算是强迫自己通读一遍Tutorial ...

  5. 【SQLAlchemy】SQLAlchemy技术文档(中文版)(上)

    1.版本检查 import sqlalchemy sqlalchemy.__version__ 2.连接 from sqlalchemy import create_engine engine = c ...

  6. SQLAlchemy技术文档(中文版)-下

    10.建立联系(外键) 是时候考虑怎样映射和查询一个和Users表关联的第二张表了.假设我们系统的用户可以存储任意数量的email地址.我们需要定义一个新表Address与User相关联. from ...

  7. SQLAlchemy技术文档(中文版)-上

    转自:http://www.cnblogs.com/iwangzc/p/4112078.html 1.版本检查 import sqlalchemy sqlalchemy.__version__ 2.连 ...

  8. 用python把技术文档中,每个模块系列截图生成一个动态GIF

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 最近在写技术文档的时候,发现一个问题.对于每个技术步骤,都需要一个截图,这 ...

  9. Kafka 技术文档

    Kafka 技术文档   目录 1 Kafka创建背景 2 Kafka简介 3 Kafka好处 3.1 解耦 3.2 冗余 3.3 扩展性 3.4 灵活性 & 峰值处理能力 3.5 可恢复性 ...

随机推荐

  1. Logrotate实现Catalina.out日志每俩小时切割

    一.Logrotate工具介绍 Logrotate是一个日志文件管理工具,它是Linux默认自带的一个日志切割工具.用来把旧文件轮转.压缩.删除,并且创建新的日志文件.我们可以根据日志文件的大小.天数 ...

  2. LVS基于NAT模式搭建负载均衡群集

    LVS的基本架构图 负载均衡群集中,包括三个层次的组件: 1.第一层,负载调度器(BL) 前段至少有一个负载调度器(Load Balancer 或称为Director)负责响应并分发来自客户端的访问请 ...

  3. 汇编:输出寄存器AX中的内容(子程序)

    ;输出寄存器AX中的内容(子程序) DATAS segment DATAS ends CODES segment START: mov AX,DATAS mov DS,AX ;正式代码开始 mov A ...

  4. stdio中牛逼的写法

    用空间换时间的典型 /* * NOTE! This ctype does not handle EOF like the standard C * library is required to. */ ...

  5. POJ:2236-Wireless Network

    Wireless Network Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 34265 Accepted: 14222 D ...

  6. DFS:C 小Y的难题(1)

    解题心得: 1.在明确使用DFS之后一定要找到递归函数的出口.方向,以及递归的点(在某个情况下开始递归)(void 也可以return,但是没有返回值).递归时也要有递归的方向,最后都能够达到递归的出 ...

  7. INSERT⋯ACCEPTING_DUPLICATE_KEYS

    使用ACCEPTING DUPLICATE KEYS时,当插入时发现这条记录已存在时,那么这条记录将不会被insert,后续记录继续执行insert

  8. SAPバリアント

    SAPバリアント   VARI バリアント VARID バリアント一覧 VARIT バリアントテキスト VARIS バリアント割当 TVARV バリアント変数(クライアント非依存) TVARVC バリ ...

  9. 不同级域名中的 Cookie 共享

    HTTP 响应头中 Set-Cookie 行未指定 domain 时则设置访问的域名 seliote.com 可以设置 seliote.com(也可以写成 .seliote.com 意思一样) 与 w ...

  10. 使用MD5比较两个文件是否相同

    MD5算法:是计算机广泛使用的一种哈希算法,将数据(如汉字)运算为另一固定长度值,用于确保信息传输完整一致.java,C++ 等多种编程语言都有MD5的实现,可直接使用. 文件MD5值:每个文件都可以 ...