cuda流测试=basic_single_stream
cuda流测试
/*
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
*
* NVIDIA Corporation and its licensors retain all intellectual property and
* proprietary rights in and to this software and related documentation.
* Any use, reproduction, disclosure, or distribution of this software
* and related documentation without an express license agreement from
* NVIDIA Corporation is strictly prohibited.
*
* Please refer to the applicable NVIDIA end user license agreement (EULA)
* associated with this source code for terms and conditions that govern
* your use of this NVIDIA software.
*
*/ #include "../common/book.h"
#include "cuda.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#define N (1024*1024)
#define FULL_DATA_SIZE (N*20) __global__ void kernel(int *a, int *b, int *c) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) {
//idx后两个数
int idx1 = (idx + ) % ;
int idx2 = (idx + ) % ;
float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
c[idx] = (as + bs) / ;
}
} int main(void) {
cudaDeviceProp prop;
int whichDevice;
HANDLE_ERROR(cudaGetDevice(&whichDevice));
HANDLE_ERROR(cudaGetDeviceProperties(&prop, whichDevice));
if (!prop.deviceOverlap) {
printf("Device will not handle overlaps, so no speed up from streams\n");
return ;
} cudaEvent_t start, stop;
float elapsedTime; cudaStream_t stream;
int *host_a, *host_b, *host_c;
int *dev_a, *dev_b, *dev_c; // start the timers
HANDLE_ERROR(cudaEventCreate(&start));
HANDLE_ERROR(cudaEventCreate(&stop)); //初始化流
HANDLE_ERROR(cudaStreamCreate(&stream)); // allocate the memory on the GPU
HANDLE_ERROR(cudaMalloc((void**)&dev_a,
N * sizeof(int)));
HANDLE_ERROR(cudaMalloc((void**)&dev_b,
N * sizeof(int)));
HANDLE_ERROR(cudaMalloc((void**)&dev_c,
N * sizeof(int))); //分配由于GPU访问的主机无分页内存(锁定内存页)
HANDLE_ERROR(cudaHostAlloc((void**)&host_a,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault));
HANDLE_ERROR(cudaHostAlloc((void**)&host_b,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault));
HANDLE_ERROR(cudaHostAlloc((void**)&host_c,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault)); for (int i = ; i<FULL_DATA_SIZE; i++) {
host_a[i] = rand();
host_b[i] = rand();
} HANDLE_ERROR(cudaEventRecord(start, ));
// now loop over full data, in bite-sized chunks
for (int i = ; i<FULL_DATA_SIZE; i += N) {
//异步复制主机上内存的值到设备上
HANDLE_ERROR(cudaMemcpyAsync(dev_a, host_a + i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream));
HANDLE_ERROR(cudaMemcpyAsync(dev_b, host_b + i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream)); kernel << <N / , , , stream >> >(dev_a, dev_b, dev_c); //将计算的值复制会主机
HANDLE_ERROR(cudaMemcpyAsync(host_c + i, dev_c,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream)); }
//从锁定页将结果块复制到主机内存
HANDLE_ERROR(cudaStreamSynchronize(stream)); HANDLE_ERROR(cudaEventRecord(stop, )); HANDLE_ERROR(cudaEventSynchronize(stop));
HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,
start, stop));
printf("Time taken: %3.1f ms\n", elapsedTime); // cleanup the streams and memory
HANDLE_ERROR(cudaFreeHost(host_a));
HANDLE_ERROR(cudaFreeHost(host_b));
HANDLE_ERROR(cudaFreeHost(host_c));
HANDLE_ERROR(cudaFree(dev_a));
HANDLE_ERROR(cudaFree(dev_b));
HANDLE_ERROR(cudaFree(dev_c));
HANDLE_ERROR(cudaStreamDestroy(stream)); return ;
}
项目打包下载
cuda流测试=basic_single_stream的更多相关文章
- CUDA流(Stream)
CUDA流表示一个GPU操作队列,该队列中的操作将以添加到流中的先后顺序而依次执行.可以将一个流看做是GPU上的一个任务,不同任务可以并行执行.使用CUDA流,首先要选择一个支持设备重叠(Device ...
- 推荐一款简单易用线上引流测试工具:GoReplay
一. 引流测试产生背景 日常大部分的测试工作都是在测试环境下,通过模拟用户的行为来对系统进行验证,包括功能以及性能.在这个过程中,你可能会遇到以下问题: 用户访问行为比较复杂,模拟很难和用户行为一致, ...
- 两个VLC实现播放串流测试
实现原理: 一个VLC打开视频文件发布串流(格式HTTP.RTP.RTSP等),另一个VLC打开串流播放 发布串流步骤: 1.菜单“媒体”->“流”,先添加视频文件.选择“串流”,如下图: 2. ...
- 两个VLC实现播放串流测试 (转)
实现原理: 一个VLC打开视频文件发布串流(格式HTTP.RTP.RTSP等),另一个VLC打开串流播放 发布串流步骤: 1.菜单“媒体”->“流”,先添加视频文件.选择“串流”,如下图: 2. ...
- rtmp拉流测试工具
http://www.cutv.com/demo/live_test.swf ================================================== ========== ...
- Java文件与流测试
import java.io.File; import java.io.InputStreamReader; import java.math.BigDecimal; import java.io.B ...
- CUDA 7流简化并发
CUDA 7流简化并发 异构计算是指有效使用系统中的所有处理器,包括CPU和GPU.为此,应用程序必须在多个处理器上同时执行功能.CUDA应用程序通过在流(按顺序执行的命令序列)中,执行异步命令来管理 ...
- CUDA中的流与事件
流:CUDA流很像CPU的线程,一个CUDA流中的操作按顺序进行,粗粒度管理多个处理单元的并发执行. 通俗的讲,流用于并行运算,比如处理同一副图,你用一个流处理左边半张图片,再用第二个流处理右边半张图 ...
- CUDA: 流
1. 页锁定主机内存 c库函数malloc()分配标准的,可分页(Pagable)的内存,cudaHostAlloc()分配页锁定的主机内存.页锁定内存也称为固定内存(Pinned Memory)或者 ...
随机推荐
- oracle例程
原创转载请注明出处 启动例程: 数据库启动例程的3个步骤 启动例程(NOMOUNT状态):读取参数文件,分配SGA和启动后台进程. 装载数据库(MOUNT状态):根据初始化参数control_file ...
- nginx大量TIME_WAIT的解决办法
1.netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}' 查看time_wait 很大 2.解决此问题需要对sysc ...
- Cannot add or update a child row:
两个 表 数据 不一致... 含有 约束 的 表 中 所有 id 都应该 在 主 表 中 可以 找到---
- 【ACM】一种排序
一种排序 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都是整数 ...
- Gym 100971B Derangement
要求改换序列,使得没有位置是a[i] == i成立.输出最小要换的步数 首先把a[i] == i的位置记录起来,然后两两互相换就可以了. 对于是奇数的情况,和它前一个换或者后一个换就可以,(注意前一个 ...
- webpack webpack-dev-server报错
Error: getaddrinfo ENOTFOUND localhost at errnoException (dns.js:28:10) at GetAddrInfoReqWrap.onlook ...
- P1736 创意吃鱼法80
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
- 《C#高效编程》读书笔记11-理解短小方法的优势
我们最好尽可能的编写最清晰的代码,将优化交给JIT编译器完成.一个常见的错误优化是,将大量逻辑放在一个函数中,以期减少额外的方法调用开销.这种将函数逻辑直接写在循环内部的常见优化做法却会降低.NET应 ...
- 玩转spring ehcache 缓存框架
一.简介 Ehcache是一个用Java实现的使用简单,高速,实现线程安全的缓存管理类库,ehcache提供了用内存,磁盘文件存储,以及分布式存储方式等多种灵活的cache管理方案.同时ehcache ...
- 从零开始的全栈工程师——js篇2.4
条件语句与循环语句 变量提升: 变量提升是浏览器的一个功能,在运行js代码之前,浏览器会给js一个全局作用域叫window ,window分两个模块,一个叫内存模块,一个叫运行模块,内存模块找到当前作 ...