day34 协程
1. 前提
之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。
随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。
为此我们需要先回顾下并发的本质:切换+保存状态
cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长
ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态
一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。
为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:
#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
import time def func1(): for i in range(11):
#yield
print('这是我第%s次打印啦' % i)
time.sleep(1) def func2():
g = func1()
#next(g)
for k in range(10): print('哈哈,我第%s次打印了' % k)
time.sleep(1)
#next(g) #不写yield,下面两个任务是执行完func1里面所有的程序才会执行func2里面的程序,有了yield,我们实现了两个任务的切换+保存状态
func1()
func2() 通过yield实现任务切换+保存现场
通过yield任务切换+保存状态
#基于yield并发执行,多任务之间来回切换,这就是个简单的协程的体现,但是他能够节省I/O时间吗?不能
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield
# time.sleep(1) #发现什么?只是进行了切换,但是并没有节省I/O时间
print('处理了数据:',x)
def producer():
'''任务2:生产数据'''
g=consumer()
next(g) #找到了consumer函数的yield位置
for i in range(3):
# for i in range(10000000):
g.send(i) #给yield传值,然后再循环给下一个yield传值,并且多了切换的程序,比直接串行执行还多了一些步骤,导致执行效率反而更低了。
print('发送了数据:',i)
start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer() #我在当前线程中只执行了这个函数,但是通过这个函数里面的send切换了另外一个任务
stop=time.time() # 串行执行的方式
# res=producer()
# consumer(res)
# stop=time.time() print(stop-start) 单纯的切换反而会降低运行效率
单纯的切换反而会降低运行效率
二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。
import time
def func1():
while True:
print('func1')
yield def func2():
g=func1()
for i in range(10000000):
i+1
next(g)
time.sleep(3)
print('func2')
start=time.time()
func2()
stop=time.time()
print(stop-start) yield不能检测IO,实现遇到IO自动切换
yield不能检测IO,实现遇到IO自动切换
协程就是告诉Cpython解释器,你不是nb吗,不是搞了个GIL锁吗,那好,我就自己搞成一个线程让你去执行,省去你切换线程的时间,我自己切换比你切换要快很多,避免了很多的开销,对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。
协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:
#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。 #2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换
二 协程介绍
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、
需要强调的是:
#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
三 Greenlet
如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换
#真正的协程模块就是使用greenlet完成的切换
from greenlet import greenlet def eat(name):
print('%s eat 1' %name) #
g2.switch('taibai') #
print('%s eat 2' %name) #
g2.switch() #
def play(name):
print('%s play 1' %name) #
g1.switch() #
print('%s play 2' %name) # g1=greenlet(eat)
g2=greenlet(play) g1.switch('taibai')#可以在第一次switch时传入参数,以后都不需要 1
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度
#顺序执行
import time
def f1():
res=1
for i in range(100000000):
res+=i def f2():
res=1
for i in range(100000000):
res*=i start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337 #切换
from greenlet import greenlet
import time
def f1():
res=1
for i in range(100000000):
res+=i
g2.switch() def f2():
res=1
for i in range(100000000):
res*=i
g1.switch() start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524 效率对比
效率对比
greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。
上面这个图,是协程真正的意义,虽然没有规避固有的I/O时间,但是我们使用这个时间来做别的事情了,一般在工作中我们都是进程+线程+协程的方式来实现并发,以达到最好的并发效果,如果是4核的cpu,一般起5个进程,每个进程中20个线程(5倍cpu数量),每个线程可以起500个协程,大规模爬取页面的时候,等待网络延迟的时间的时候,我们就可以用协程去实现并发。 并发数量 = 5 * 20 * 500 = 50000个并发,这是一般一个4cpu的机器最大的并发数。nginx在负载均衡的时候最大承载量就是5w个
单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。
四 Gevent介绍
#安装
pip3 install gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法
# g1=gevent.spawn(func,1,2,3,x=4,y=5)创建一个协程对象g1,
# spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,
# 可以是位置实参或关键字实参,都是传给函数eat的,spawn是异步提交任务
import gevent
import time
from gevent import monkey;monkey.patch_all()
def func1(n):
print("11111",n)
# time.sleep(2)
gevent.sleep(2)
print("22222",n) def func2(m):
print("33333",m)
# time.sleep(2)
gevent.sleep(2)
print("44444",m) startime=time.time()
g1=gevent.spawn(func1,"alex")
g2=gevent.spawn(func2,"wusir") # g1.join() #等待g1结束上面只是创建协程对象,这边才开始执行
# g2.join() #等待g2结束 有人测试的时候会发现,不写第二个join也能执行g2,
# 是的,协程帮你切换执行了,但是你会发现,如果g2里面的任务执行的时间长,但是不写join的话,就不会执行完等到g2剩下的任务了 gevent.joinall([g1,g2]) #相当于上面的同时执行g1,g2
endtime=time.time()
print(endtime-startime)
print("代码结束")
遇到IO阻塞时会自动切换任务
import gevent
def eat(name):
print('%s eat 1' %name)
gevent.sleep(2)
print('%s eat 2' %name) def play(name):
print('%s play 1' %name)
gevent.sleep(1)
print('%s play 2' %name) g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主') 遇到I/O切换
遇到I/O切换
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之类
或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey;monkey.patch_all() #必须写在最上面,这句话后面的所有阻塞全部能够识别了 import gevent #直接导入即可
import time
def eat():
#print()
print('eat food 1')
time.sleep(2) #加上mokey就能够识别到time模块的sleep了
print('eat food 2') def play():
print('play 1')
time.sleep(1) #来回切换,直到一个I/O的时间结束,这里都是我们个gevent做得,不再是控制不了的操作系统了。
print('play 2') g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('主')
我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程,虚拟线程,其实都在一个线程里面
进程线程的任务切换是由操作系统自行切换的,你自己不能控制
协程是通过自己的程序(代码)来进行切换的,自己能够控制,只有遇到协程模块能够识别的IO操作的时候,程序才会进行任务切换,实现并发效果,如果所有程序都没有IO操作,那么就基本属于串行执行了。
五 Gevent之同步与异步
day34 协程的更多相关文章
- day34 线程池 协程
今日内容: 1. 线程的其他方法 2.线程队列(重点) 3.线程池(重点) 4.协程 1.线程的其他方法 语法: Threading.current_thread() # 当前正在运行的线程对象的一个 ...
- 学到了林海峰,武沛齐讲的Day34 完 线程 进程 协程 很重要
线程 进程 协程 很重要 ...儿子满月回家办酒,学的有点慢,坚持
- python并发编程之线程/协程
python并发编程之线程/协程 part 4: 异步阻塞例子与生产者消费者模型 同步阻塞 调用函数必须等待结果\cpu没工作input sleep recv accept connect get 同 ...
- Python(八)进程、线程、协程篇
本章内容: 线程(线程锁.threading.Event.queue 队列.生产者消费者模型.自定义线程池) 进程(数据共享.进程池) 协程 线程 Threading用于提供线程相关的操作.线程是应用 ...
- Lua的协程和协程库详解
我们首先介绍一下什么是协程.然后详细介绍一下coroutine库,然后介绍一下协程的简单用法,最后介绍一下协程的复杂用法. 一.协程是什么? (1)线程 首先复习一下多线程.我们都知道线程——Thre ...
- 协程--gevent模块(单线程高并发)
先恶补一下知识点,上节回顾 上下文切换:当CPU从执行一个线程切换到执行另外一个线程的时候,它需要先存储当前线程的本地的数据,程序指针等,然后载入另一个线程的本地数据,程序指针等,最后才开始执行.这种 ...
- Python 【第五章】:线程、进程和协程
Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. #!/usr/bin/env python # -*- coding:utf-8 -*- import t ...
- 进击的Python【第十章】:Python的socket高级应用(多进程,协程与异步)
Python的socket高级应用(多进程,协程与异步)
- unity 协程
StartCoroutine在unity3d的帮助中叫做协程,意思就是启动一个辅助的线程. 在C#中直接有Thread这个线程,但是在unity中有些元素是不能操作的.这个时候可以使用协程来完成. 使 ...
随机推荐
- round四舍五入
#!/usr/bin/env python r = round(3.6) #四舍五入 print(r) C:\Python35\python3.exe F:/Python/2day/c7.py 4 P ...
- css3(border-radius)边框圆角详解(转)
css3(border-radius)边框圆角详解 (2014-05-19 16:16:29) 转载▼ 标签: divcss html it css3 分类: 网页技术 传统的圆角生成方案,必须使用多 ...
- 第三章:PCL基础3.1
架构师为了确保在PCL中所有代码风格的一致性,使得其他开发者及用户容易理解源码,PCL开发者制定并遵循着一套严格的编写规范,PCL的开发者都默认此规范. 3.1PCL推荐的命名规范 1.文件命名 1) ...
- Entity Framework Tutorial Basics(2):What is Entity Framework?
What is Entity Framework? Writing and managing ADO.Net code for data access is a tedious and monoton ...
- 导入project后lib文件夹一直没有jar包
原因: 导入project,倒错了项目,只因为后面新建的项目名称有和前面的差不多,导致自己选择了原来的项目,因此,项目的注解一直报错.
- 1、Tomcat7性能监控与优化
1. 目的 通过优化tomcat提高网站的并发能力. 2. 服务器资源 服务器所能提供CPU.内存.硬盘的性能对处理能力有决定性影响. 3. 优化配置 3.1. 配置tomcat管理员账户 ...
- postgre教程
http://www.yiibai.com/html/postgresql/2013/080890.html
- spring分布式事务学习笔记(2)
此文已由作者夏昀授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Model类如下:package com.xy.model 1 package com.xy.model; ...
- [CentOS7] 设置语言环境
博主想要将英文环境(en_US.UTF-8)改为中文环境(zh_CN.UTF-8),有两种解决方法 一.临时解决方法 使用LANG=“zh_CN.UTF-8”,这个命令来实现,不过在重新登录的时候又会 ...
- Java与其它语言的比较
Java与C/C++相比.Java语言是一种完全的面对对象语言,虽然他的底层(运行时库)是用C语言开发 的,可是并不依赖于C.因为Java的运行是在运行时库的支持下运行的,所以运行的效率比起可以更接近 ...