一、MADlib简介
  
  MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现、统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力,可以非常方便的加载到数据库中, 扩展数据库的分析功能,2015年7月MADlib成为Apache软件基金会的孵化项目,其最新版本为MADlib1.11,可以用在Greenplum、PostgreSQL和HAWQ等数据库系统中。
  
  1. 设计思想
  
  驱动MADlib架构的主要思想与Hadoop是一致的,主要体现在以下方面:
  
  操作数据库内的本地数据,不在多个运行时环境中进行不必要的数据移动。
  
  充分利用数据库引擎的功能,但将机器学习逻辑从特定数据库的实现细节中分离出来。
  
  利用MPP无共享技术提供的并行性和可扩展性,如Greenplum数据库和HAWQ。
  
  执行的维护活动对Apache社区和正在进行的学术研究开放。
  
  如果只用一句话总结MADlib的特点,就如标题所述,可以用SQL玩转数据分析、数据挖掘和机器学习。
  
  2. 特性
  
  (1)分类
  
  如果所需的输出实质上是分类的,可以使用分类方法建立模型,预测新数据会属于哪一类。分类的目标是能够将输入记录标记为正确的类别。
  
  分类的例子:假设有描述人口统计的数据,以及个人申请贷款和贷款违约历史数据,那么我们就能建立一个模型,描述新的人口统计数据集合贷款违约的可能性。此场景下输出的分类为“违约”和“正常”两类。
  
  (2)回归
  
  如果所需的输出具有连续性,我们使用回归方法建立模型,预测输出值。
  
  回归的例子:如果有真实的描述房地产属性的数据,我们就可以建立一个模型,预测基于房屋已知特征的售价。因为输出反应了连续的数值而不是分类,所以该场景是一个回归问题。
  
  (3)聚类
  
  识别数据分组,一组中的数据项比其它组的数据项更相似。
  
  聚类的例子:在客户细分分析中,目标是识别客户行为相似特征组,以便针对不同特征的客户设计各种营销活动,以达到市场目的。如果提前了解客户细分情况,这将是一个受控的分类任务。当我们让数据识别自身分组时,这就是一个聚类任务。
  
  (4)主题建模
  
  主题建模与聚类相似,也是确定彼此相似的数据组。但这里的相似通常特指在文本领域中,具有相同主题的文档。
  
  (5)关联规则挖掘
  
  又叫做购物篮分析或频繁项集挖掘。相对于随机发生,确定哪些事项更经常一起发生,指出事项之间的潜在关系。
  
  关联规则挖掘的例子:在一个网店应用中,关联规则挖掘可用于确定哪些商品倾向于被一起售出。然后将这些商品输入到客户推荐引擎中,提供促销机会,如著名的啤酒与尿布的故事。
  
  (6)描述性统计
  
  描述性统计不提供模型,因此不被认为是一种机器学习方法。但描述性统计有助于向分析人员提供信息以了解基础数据,为数据提供有价值的解释,可能影响数据模型的选择。
  
  描述性统计的例子:计算数据集中每个变量内的数据分布,可以帮助分析式理解哪些变量应被视为分类变量,哪些变量是连续性变量,以及值的分布情况。
  
  (7)模型验证
  
  如果不了解一个模型的准确性就开始使用它,会导致糟糕的结果。正因如此,理解模型存在的问题,并用测试数据评估模型的精度显得尤为重要。需要将训练数据和测试数据分离,频繁进行数据分析,验证统计模型的有效性,评估模型不过分拟合训练数据。N-fold交叉验证也经常被使用。
  
  3. 功能
  
  MADlib的功能特色如图1所示。
  
  图1
  
  • Data Types and Transformations(数据类型转换)
  
   Arrays and Matrices(数组与矩阵)
  
  o Array Operations(数组运算)
  
  o Matrix Operations(矩阵运算)
  
  o Matrix Factorization(低矩阵分解)
  
  o Low-rank Matrix Factorization(低阶矩阵分解)
  
  o Singular Value Decomposition(SVD,奇异值分解)
  
  o Norms and Distance functions(规范和距离函数)
  
  o Sparse Vectors(稀疏向量)
  
   Dimensionality Reduction(降维)
  
  o Principal Component Analysis(PCA主成分分析)
  
  o Principal Component Projection(PCP主成分投影)
  
   Encoding Categorical Variables(编码分类变量)
  
   Stemming(切词)
  
  • Model Evaluation(模型评估)
  
   Cross Validation(交叉验证)
  
  • Statistics(统计)
  
   Descriptive Statistics(描述性统计)
  
  o Pearson’s Correlation(皮尔斯相关性)
  
  o Summary(摘要汇总)
  
   Inferential Statistics(推断性统计)
  
  o Hypothesis Tests(假设检验)
  
   Probability Functions(概率函数)
  
  • Supervised Learning(监督学习算法)
  
   Conditional Random Field(条件随机场)
  
   Regression Models(回归模型)
  
  o Clustered Variance(聚类方差)
  
  o Cox-Proportional Hazards Regression(Cox比率风险回归模型)
  
  o Elastic Net Regularization(Elastic Net 回归)
  
  o Generalized Linear Models
  
  o Linear Regression(线性回归)
  
  o Logistic Regression(逻辑回归)
  
  o Marginal Effects(边际效应)
  
  o Multinomial Regression(多项式回归)
  
  o Ordinal Regression(有序回归)
  
  o Robust Variance(鲁棒方差)
  
   Support Vector Machines(SVM,支持向量机)
  
   Tree Methods(树模型)
  
  o Decision Tree(决策树)
  
  o Random Forest(随机森林)
  
  • Time Series Analysis(时间序列分析)
  
   ARIMA(自回归积分滑动平均模型)
  
  • Unsupervised Learning(无监督学习)
  
   Association Rules(关联规则)
  
  o Apriori Algorithm(Apriori算法)
  
   Clustering(聚类)
  
  o k-Means Clustering(k-Means)
  
   Topic Modelling(主题模型)
  
  o Latent Dirichlet Allocation(LDA)
  
  • Utility Functions(效用函数)
  
   Developer Database Functions(开发者数据库函数)
  
   Linear Solvers(线性求解器)
  
  o Dense Linear Systems(稠密线性系统)
  
  o Sparse Linear Systems(稀疏线性系统)
  
   Path Functions(路径函数)
  
   PMML Export(PMML输出)
  
   Text Analysis(文本分析)
  
  o Term Frequency(词频,TF)
  
  二、安装
  
  1. 确定安装平台
  
  MADlib最新发布版本是1.11,可以安装在PostgreSQL、Greenplum和HAWQ中,在不同的数据库中安装过程也不尽相同。我是安装在HAWQ2.1.1.0中。
  
  2. 下载MADlib二进制安装压缩包
  
  下载地址为:https://network.pivotal.io/products/pivotal-hdb。2.1.1.0版本的HAWQ提供了四个安装文件,如图2所示。经过测试,只有MADlib 1.10.0版本的文件可以正常安装。
  
  图2
  
  3. 安装MADlib
  
  以下命令需要使用gpadmin用户,在HAWQ的master主机上执行。
  
  (1)解压缩
  
  [plain] view plain copy
  
  tar -zxvf madlib-ossv1.10.0_pv1.9.7_hawq2.1-rhel5-x86_64.tar.gz
  
  (2)安装MADlib的gppkg文件
  
  [plain] view plain copy
  
  gppkg -i madlib-ossv1.10.0_pv1.9.7_hawq2.1-rhel5-x86_64.gppkg
  
  该命令在HAWQ集群的所有节点(master和segment)上创建MADlib的安装目录和文件,缺省目录为/usr/local/hawq_2_1_1_0/madlib。
  
  (3)在指定数据库中部署MADlib
  
  [plain] view plain copy
  
  $GPHOME/madlib/bin/madpack install -c /dm -s www.wanmeiyuele.cn madlib -p hawq
  
  该命令在HAWQ的dm数据库中建立madlib schema,-p参数指定平台为HAWQ。命令执行后可以查看在madlib schema中创建的数据库对象。
  
  [plain] view plain copy
  
  dm=# set search_path=madlib;
  
  SET
  
  dm=# \dt
  
  List of relations
  
  Schema | Name | Type | Owner | Storage
  
  --------+------------------+-------+---------+-------------
  
  madlib | migrationhistory | table | gpadmin | append only
  
  (1 row)
  
  dm=# \ds
  
  List of relations
  
  Schema | Name | Type | Owner | Storage
  
  --------+-------------------------+----------+---------+---------
  
  madlib | migrationhistory_id_seq | sequence | gpadmin | heap
  
  (1 row)
  
  dm=# select type,count(*)
  
  dm-# from (select p.proname as name,
  
  dm(# case when p.proisagg then 'agg'
  
  dm(# when p.prorettype = 'pg_catalog.trigger'::pg_catalog.regtype then 'trigger'
  
  dm(# else 'normal'
  
  dm(# end as type
  
  dm(# from pg_catalog.pg_proc p, pg_catalog.pg_namespace n
  
  dm(# where n.oid = p.pronamespace and n.nspname='madlib') t
  
  dm-# group by rollup (type);
  
  type | count
  
  --------+-------
  
  agg | 135
  
  normal | 1324
  
  | 1459
  
  (3 rows)
  
  可以看到,MADlib部署应用程序madpack首先创建数据库模式madlib,然后在该模式中创建数据库对象,包括 一个表,一个序列,1324个普通函数,135个聚合函数。所有的机器学习和数据挖掘模型、算法、操作和功能都是通过调用这些函数实际执行的。
  
  (4)验证安装
  
  [plain] view plain copy
  
  $GPHOME/madlib/bin/madpack install-check -c /dm -s madlib -p hawq
  
  该命令通过执行29个模型的77个案例,验证所有模型都能正常工作。命令输出如下:
  
  [plain] view plain copy
  
  [gpadmin@hdp3 Madlib]$ $GPHOME/madlib/bin/madpack install-check -c /dm -s madlib -p hawq
  
  madpack.py : INFO : Detected HAWQ version 2.1.
  
  TEST CASE RESULT|Module: array_ops|array_ops.sql_in|PASS|Time: 1851 milliseconds
  
  TEST CASE RESULT|Module: bayes|gaussian_naive_www.longboshyl.cn bayes.sql_in|PASS|Time: 24222 milliseconds
  
  TEST CASE RESULT|Module: bayes|bayes.sql_in|PASS|Time: 70634 milliseconds
  
  TEST CASE RESULT|Module: crf|crf_train_small.sql_in|PASS|Time: 27186 milliseconds
  
  TEST CASE RESULT|Module: crf|crf_train_large.sql_in|PASS|Time: 32602 milliseconds
  
  TEST CASE RESULT|Module: crf|crf_test_small.sql_in|PASS|Time: 22410 milliseconds
  
  TEST CASE RESULT|Module: crf|crf_test_large.sql_in|PASS|Time: 21711 milliseconds
  
  TEST CASE RESULT|Module: elastic_net|elastic_net_install_check.sql_in|PASS|Time: 931563 milliseconds
  
  TEST CASE RESULT|Module: graph|sssp.sql_in|PASS|www.jiaeidaypt.cn Time: 18174 milliseconds
  
  TEST CASE RESULT|Module: linalg|svd.sql_in|PASS|Time: 72105 milliseconds
  
  TEST CASE RESULT|Module: linalg|matrix_ops.sql_in|PASS|Time: 58312 milliseconds
  
  TEST CASE RESULT|Module: linalg|linalg.sql_in|PASS|Time: 2836 milliseconds
  
  TEST CASE RESULT|Module: pmml|table_to_pmml.sql_in|PASS|Time: 34508 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_rf.sql_in|PASS|Time: 35993 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_ordinal.sql_in|PASS|Time: 15540 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_multinom.sql_in|PASS|Time: 12546 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_glm_poisson.sql_in|www.huazongyule.net PASS|Time: 7321 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_glm_normal.sql_in|PASS|Time: 8597 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_glm_ig.sql_in|PASS|Time: 8861 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_glm_gamma.sql_in|PASS|Time: 26212 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_glm_binomial.sql_in|PASS|Time: 12977 milliseconds
  
  TEST CASE RESULT|Module: pmml|pmml_dt.sql_in|PASS|Time: 9401 milliseconds
  
  TEST CASE RESULT|Module: prob|prob.sql_in|PASS|Time: 1917 milliseconds
  
  TEST CASE RESULT|Module: sketch|support.sql_in|PASS|Time: 143 milliseconds
  
  TEST CASE RESULT|Module: sketch|mfv.sql_in|PASS|Time: 720 milliseconds
  
  TEST CASE RESULT|Module: sketch|fm.sql_in|PASS|Time: 7301 milliseconds
  
  TEST CASE RESULT|Module: sketch|cm.sql_in|PASS|Time: 19777 milliseconds
  
  TEST CASE RESULT|Module: svm|svm.sql_in|PASS|Time: 205677 milliseconds
  
  TEST CASE RESULT|Module: tsa|arima_train.sql_in|PASS|Time: 75680 milliseconds
  
  TEST CASE RESULT|Module: tsa|arima.sql_in|PASS|Time: 76236 milliseconds
  
  TEST CASE RESULT|Module: conjugate_gradient|conj_grad.sql_in|PASS|Time: 6757 milliseconds
  
  TEST CASE RESULT|Module: knn|knn.sql_in|PASS|Time: 9835 milliseconds
  
  TEST CASE RESULT|Module: lda|lda.sql_in|PASS|Time: 20510 milliseconds
  
  TEST CASE RESULT|Module: stats|wsr_test.sql_in|PASS|Time: 2766 milliseconds
  
  TEST CASE RESULT|Module: stats|t_test.sql_in|PASS|Time: 3686 milliseconds
  
  TEST CASE RESULT|Module: stats|robust_and_clustered_variance_coxph.sql_in|PASS|Time: 17499 milliseconds
  
  TEST CASE RESULT|Module: stats|pred_metrics.sql_in|PASS|Time: 14032 milliseconds
  
  TEST CASE RESULT|Module: stats|mw_test.sql_in|PASS|Time: 1852 milliseconds
  
  TEST CASE RESULT|Module: stats|ks_test.sql_in|PASS|Time: 2465 milliseconds
  
  TEST CASE RESULT|Module: stats|f_test.sql_in|PASS|Time: 2358 milliseconds
  
  TEST CASE RESULT|Module: stats|cox_prop_hazards.sql_in|PASS|Time: 39932 milliseconds
  
  TEST CASE RESULT|Module: stats|correlation.sql_in| www.wmyl11.com PASS|Time: 10520 milliseconds
  
  TEST CASE RESULT|Module: stats|chi2_test.sql_in|PASS|Time: 3581 milliseconds
  
  TEST CASE RESULT|Module: stats|anova_test.sql_in|PASS|Time: 1801 milliseconds
  
  TEST CASE RESULT|Module: svec_util|svec_test.sql_in|PASS|Time: 14043 milliseconds
  
  TEST CASE RESULT|Module: svec_util|gp_sfv_sort_order.sql_in|PASS|Time: 3399 milliseconds
  
  TEST CASE RESULT|Module: utilities|text_utilities.sql_www.wmyl15.com in|PASS|Time: 6579 milliseconds
  
  TEST CASE RESULT|Module: utilities|sessionize.sql_in|PASS|Time: 3901 milliseconds
  
  TEST CASE RESULT|Module: utilities|pivot.sql_in|PASS|Time: 15634 milliseconds
  
  TEST CASE RESULT|Module: utilities|path.sql_in|PASS|Time: 9321 milliseconds
  
  TEST CASE RESULT|Module: utilities|encode_categorical.sql_in|PASS|Time: 7665 milliseconds
  
  TEST CASE RESULT|Module: utilities|drop_madlib_temp.sql_in|PASS|Time: 153 milliseconds
  
  TEST CASE RESULT|Module: assoc_rules|assoc_rules.sql_in|PASS|Time: 31975 milliseconds
  
  TEST CASE RESULT|Module: convex|lmf.sql_in|PASS|Time: 66775 milliseconds
  
  TEST CASE RESULT|Module: glm|poisson.sql_in|PASS|Time: www.ruanjianyin.cn 19117 milliseconds
  
  TEST CASE RESULT|Module: glm|ordinal.sql_in|PASS|Time: 23446 milliseconds
  
  TEST CASE RESULT|Module: glm|multinom.sql_in|PASS|Time: 18780 milliseconds
  
  TEST CASE RESULT|Module: glm|inverse_gaussian.sql_in|PASS|Time: 20931 milliseconds
  
  TEST CASE RESULT|Module: glm|gaussian.sql_in|PASS|Time: 23795 milliseconds
  
  TEST CASE RESULT|Module: glm|gamma.sql_in|PASS|Time: 43365 milliseconds
  
  TEST CASE RESULT|Module: glm|binomial.sql_in|PASS|Time: 39437 milliseconds
  
  TEST CASE RESULT|Module: linear_systems|sparse_linear_sytems.sql_in|PASS|Time: 5405 milliseconds
  
  TEST CASE RESULT|Module: linear_systems|dense_linear_sytems.sql_in|PASS|Time: 3331 milliseconds
  
  TEST CASE RESULT|Module: recursive_partitioning|random_forest.sql_in|PASS|Time: 294832 milliseconds
  
  TEST CASE RESULT|Module: recursive_partitioning|decision_tree.sql_in|PASS|Time: 91311 milliseconds
  
  TEST CASE RESULT|Module: regress|robust.sql_in|PASS|Time: 55325 milliseconds
  
  TEST CASE RESULT|Module: regress|multilogistic.sql_in|PASS|Time: 25330 milliseconds
  
  TEST CASE RESULT|Module: regress|marginal.sql_in|PASS|Time: www.10000da.cn 73750 milliseconds
  
  TEST CASE RESULT|Module: regress|logistic.sql_in|PASS|Time: 76501 milliseconds
  
  TEST CASE RESULT|Module: regress|linear.sql_in|PASS|Time: 7517 milliseconds
  
  TEST CASE RESULT|Module: regress|clustered.sql_in|PASS|Time: 40661 milliseconds
  
  TEST CASE RESULT|Module: sample|sample.sql_in|PASS|Time: 890 milliseconds
  
  TEST CASE RESULT|Module: summary|summary.sql_in|PASS|Time: 14644 milliseconds
  
  TEST CASE RESULT|Module: kmeans|kmeans.sql_in|PASS|Time: 52173 milliseconds
  
  TEST CASE RESULT|Module: pca|pca_project.sql_in|PASS|Time: 229016 milliseconds
  
  TEST CASE RESULT|Module: pca|pca.sql_in|PASS|Time: 523230 milliseconds
  
  TEST CASE RESULT|Module: validation|cross_validation.sql_in|PASS|Time: 33685 milliseconds
  
  [gpadmin@hdp3 Madlib]$
  
  可以看到,所有案例都已经正常执行,说明MADlib安装成功。
  
  三、卸载
  
  卸载过程基本上是安装的逆过程。
  
  1. 删除madlib模式
  
  方法1,使用madpack部署应用程序。
  
  [plain] view plain copy
  
  $GPHOME/madlib/bin/madpack uninstall -c /dm -s madlib -p hawq
  
  方法2,使用SQL命令手工删除模式。
  
  [sql] view plain copy
  
  drop schema madlib cascade;
  
  2. 删除其它遗留数据库对象
  
  (1)删除模式
  
  如果测试中途出错,数据库中可能包含测试的模式,这些模式名称的前缀都是madlib_installcheck_,只能手工执行SQL命令删除这些模式,如:
  
  [plain] view plain copy
  
  drop schema madlib_installcheck_kmeans cascade;
  
  (2)删除用户
  
  如果存在遗留的测试用户,则删除它。
  
  [sql] view plain copy
  
  drop user if exists madlib_1100_installcheck;
  
  3. 删除MADlib rpm包
  
  (1)查询包名
  
  [plain] view plain copy
  
  gppkg -q --all
  
  输出如下:
  
  [plain] view plain copy
  
  [gpadmin@hdp3 Madlib]$ gppkg -q --all
  
  20170630:16:19:53:076493 gppkg:hdp3:gpadmin-[INFO]:-Starting gppkg with args: -q --all
  
  madlib-ossv1.10.0_pv1.9.7_hawq2.1
  
  (2)删除rpm包
  
  [plain] view plain copy
  
  gppkg -r madlib-ossv1.10.0_pv1.9.7_hawq2.1

用SQL玩转数据挖掘之MADlib(一)——安装的更多相关文章

  1. HAWQ + MADlib 玩转数据挖掘之(五)——奇异值分解实现推荐算法

    一.奇异值分解简介 奇异值分解简称SVD(singular value decomposition),可以理解为:将一个比较复杂的矩阵用更小更简单的三个子矩阵的相乘来表示,这三个小矩阵描述了大矩阵重要 ...

  2. HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法

    一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...

  3. HAWQ + MADlib 玩转数据挖掘之(一)——安装

    一.MADlib简介 MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现.统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力, ...

  4. 安装了SQL2005再安装SQL 2008R2,提示此计算机上安装了 Microsoft Visual Studio 2008 的早期版本和检查是否安装了 SQL Server 2005 Express 工具的解决方案

    工作电脑上安装了SQL 2005, 但是客户电脑上安装的是SQL 2008R2,有时候连接他们的库调试没法连接,很不方便.然后又安装了个SQL2008 R2,期间遇到这两个问题,网上搜索了一下收到了解 ...

  5. 拇指玩」制作的「谷歌安装器」app

    作者:匿名用户链接:https://www.zhihu.com/question/57468448/answer/153000587来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  6. windows下mongodb基础玩法系列一介绍与安装

    windows下mongodb基础玩法系列 windows下mongodb基础玩法系列一介绍与安装 windows下mongodb基础玩法系列二CURD操作(创建.更新.读取和删除) windows下 ...

  7. sql server 2008R2无人值守批处理脚本自动化安装

    ▲版权声明:本文为博主原创文章,未经博主允许不得转载. Microsoft SQL Server 2008 R2是一款软件,提供完整的企业级技术与工具,帮助您以最低的总拥有成本获得最有价值的信息.您可 ...

  8. sql server2014企业版无人值守批处理脚本自动化安装

    ▲版权声明:本文为博主原创文章,未经博主允许不得转载. SQL Server系列软件是Microsoft 公司推出的关系型数据库管理系统.2014年4月16日于旧金山召开的一场发布会上,微软CEO萨蒂 ...

  9. sql sever和mysql 卸载及oracle安装

    sql sever和mysql的卸载及Oracle安装 目的:本人健忘,以后难免会重装系统啥的,软件卸了装是常有的事,特此写此详细教程,一是方便自己以后重装的时候可以看看:二是如果有某位初学者有幸光临 ...

随机推荐

  1. python第三十二天-----算法

    算法(Algorithm):一个计算过程,解决问题的方法时间复杂度:用来评估算法运行效率的一个东西ps:在日常使用中,请使用sort(),because no zuo no die! 1.冒泡排序:指 ...

  2. 解决django不能以本机ip地址访问

    在使用django框架来架设网站时,我们测试一般是通过django的开发服务器来完成,但是我们可以看到生成的地址是127.0.0.1:8000这样的话,我们在外网就无法访问了. 解决办法是通过传入第三 ...

  3. java 字符串和集合互相转换

    今天在写项目的时候遇到一个问题,就是要把得到的一个集合转换成字符串,发现 import org.apache.commons.lang.StringUtils; 有这么一个简单的方法:String s ...

  4. java反射专题三

    一丶调用运行时类中指定的属性 Class clazz = Person.class; //1.获取指定的属性 Field name = clazz.getField("name") ...

  5. Tiny4412 u-boot分析(1)u-boot配置流程分析

    参考Friendlyarm的文档,编译uboot的流程为 make tiny4412_config make 这个过程主要涉及到两个文件,顶层的Makefile文件和mkconfig文件,makeco ...

  6. 错误信息:"OraOLEDB.Oracle" 返回了消息 "ORA-12154: TNS: 无法解析指定的连接标识符

    错误信息:"OraOLEDB.Oracle" 返回了消息 "ORA-12154: TNS: 无法解析指定的连接标识符 链接服务器"NC"的 OLE D ...

  7. js对象简单、深度克隆(复制)

    javascript的一切实例都是对象,只是对象之间稍有不同,分为原始类型和合成类型.原始类型对象指的是字符串(String).数值(Number).布尔值(Boolean),合成类型对象指的是数组( ...

  8. [luogu3385]dfs_spfa判负环模板

    解题关键:模板保存. 判负环不需要memset dis数组,因为已经更新过得d数组一定小于0,如果当前点可以更新d,说明d更小,有可能继续扩大负环,所以继续更新:如果比d[v]大,则不可能继续更新负环 ...

  9. MySQL update select组合

    update t_news inner join (select readCount from t_news t2 where t2.id=1) t1 set t_news.readCount = t ...

  10. php学习笔记-多维数组

    多维数组就是有一个数组,它里面的每个元素又是一个数组. <?php $stuff =array('food'=>array('apple','orange'),'book'=>arr ...