[CEOI2008]order BZOJ1391 网络流
题目描述
有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。 现在给出这些参数,求最大利润
输入输出格式
输入格式:
第一行给出 N,M(1<=N<=1200,1<=M<=1200) 下面将有N组数据。
每组数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序
接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000]) 最后M行,每行给出购买机器的费用(其在[1,20000])
输出格式:
最大利润
输入输出样例
50 建立源点st与汇点ed;
类比于 最大权闭合子图;
st 与任务连边,权值为所能赚的钱;
ed 与机器相连,表示购买的花费;
但还有一个限制就是可以租用机器;
在最大权闭合子图中,如果没有该限制,其连边应该为inf的容量;
那么考虑租用,将任务与机器的连边inf改为租金即可;
租用机器的操作只与该任务有关,而与其他无关,所以改成 moneyRent即可; luogu上面我加了O2优化以及快读才过,不知道我这个dinic为啥会T(已加了当前弧优化还是T)
测试点信息
由几个点都接近900ms了,orz;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 3000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w;
edge[cnt].nxt = head[u]; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1; q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
}
int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd;
}
return add;
}
ll ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
} int main()
{
//ios::sync_with_stdio(0);
memset(head, -1, sizeof(head));
rdint(n); rdint(m);
st = 0; ed = n + m + 1;
int sum = 0;
for (int i = 1; i <= n; i++) {
int moy, num;
moy = rd(); sum += moy;
addedge(st, i, moy); addedge(i, st, 0);
//rdint(num);
num = rd();
for (int j = 0; j < num; j++) {
int ID; ID = rd(); moy = rd();
//rdint(ID); rdint(moy);
addedge(i, n + ID, moy); addedge(n + ID, i, 0);
}
}
for (int i = 1; i <= m; i++) {
int moy;// rdint(moy);
moy = rd();
addedge(n + i, ed, moy); addedge(ed, n + i, 0);
}
dinic();
printf("%d\n", sum - ans);
return 0;
}
[CEOI2008]order BZOJ1391 网络流的更多相关文章
- P4177 [CEOI2008]order(网络流)最大权闭合子图
P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...
- 【BZOJ1391】Order(网络流,最小割)
[BZOJ1391]Order(网络流,最小割) 题面 BZOJ权限题... 良心洛谷 题目描述 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成 ...
- Bzoj 1391: [Ceoi2008]order 网络流,最大权闭合图
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1105 Solved: 331[Submit][Statu ...
- [Luogu4177][CEOI2008]order
luogu sol 这题有点像网络流24题里面的太空飞行计划啊. 最大收益=总收益-最小损失. 先令\(ans=\sum\)任务收益. 源点向每个任务连容量为收益的边. 每个机器向汇点连容量为购买费用 ...
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- BZOJ 1391 [Ceoi2008]order
1391: [Ceoi2008]order Description 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完 ...
- [CEOI2008]order --- 最小割
[CEOI2008]order 题目描述: 有N个任务,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数, ...
- 【bzoj1391】[Ceoi2008]order 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend/p/6796937.html 题目描述 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序 ...
- 洛谷$P4177\ [CEOI2008]\ order$ 网络流
正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...
随机推荐
- c#在sql中存取图片image示例
这篇文章主要介绍了c#在sql中存取图片image示例,需要的朋友可以参考下 (1)控制台应用程序下演示插入图片 复制代码 代码如下: public void InsertIMG() { //将需要存 ...
- The lesser known pitfalls of allowing file uploads on your website
These days a lot of websites allow users to upload files, but many don’t know about the unknown pitf ...
- 分布式爬虫搭建系列 之一------python安装及以及虚拟环境的配置及scrapy依赖库的安装
python及scrapy框架依赖库的安装步骤: 第一步,python的安装 在Windows上安装Python 首先,根据你的Windows版本(64位还是32位)从Python的官方网站下载Pyt ...
- DDD学习笔录——领域驱动设计DDD概念总结
- elasticsearch 概念与架构(3)
转自:https://devops.taobao.com/ Node(节点):单个的装有Elasticsearch服务并且提供故障转移和扩展的服务器. Cluster(集群):一个集群就是由一个或多个 ...
- Shell编程进阶 1.8 for循环
产生序列的命令 seq 1 2 3 4 5 6 7 8 9 10 seq 1 3 5 7 9 (从1开始增加2显示这个数字,到10结束) seq - 10 8 6 4 2 seq - 10 9 8 ...
- 【转载】你知道 Linux 内核是如何构建的吗?
内核的根 Makefile 负责构建两个主要的文件:vmlinux (内核镜像可执行文件)和模块文件.内核的 Makefile 从定义如下变量开始: VERSION = PATCHLEVEL = SU ...
- jumpserver跳板机的搭建
搭建的跳板机基于0.3.2,别问我为什么不用0.5版本的,我能说我没有搭建成功么,步骤贼多,功能不完善,不建议生产环境使用 步骤其实很简单: github wiki :https://github.c ...
- Python程序退出方式(sys.exit() os._exit() os.kill() os.popen(...))
对于如何结束一个Python程序或者用Python操作去结束一个进程等,Python本身给出了好几种方法,而这些方式也存在着一些区别,对相关的几种方法看了并实践了下,同时也记录下. 参考: Pytho ...
- 使用GSON来生成JSON数据
第二种方法: 当不需要显示某个属性时,在不需要显示出的属性前加transient关键字即可满足 使用gson来解析 使用gson解析 带日期转换 集合类解析:gson中的数组与java中集合类都是对应 ...