\(\color{#0066ff}{ 题目描述 }\)

小 F 很喜欢数学,但是到了高中以后数学总是考不好。

有一天,他在数学课上发起了呆;他想起了过去的一年。一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新。这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决。

小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢。

一年过去了,想想都还有点恍惚。

他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已。也许,这就是热血吧。

也就是在那个时候,小 F 学会了矩阵乘法。让两个矩阵乘几次就能算出斐波那契数列的 第 \(10^{100}\) 项,真是奇妙无比呢。

不过,小 F 现在可不想手算矩阵乘法——他觉得好麻烦。取而代之的,是一个简单的小 问题。他写写画画,画出了一个 \(n \times m\) 的矩阵,每个格子里都有一个不超过 \(k\) 的正整数。

小 F 想问问你,这个矩阵里有多少个不同的子矩形中的数字之和是 \(k\) 的倍数? 如果把一个子矩形用它的左上角和右下角描述为 \((x_1,y_1,x_2,y_2)\),其中\(x_1 \le x_2,y_1 \le y_2\); 那么,我们认为两个子矩形是不同的,当且仅当他们以 \((x_1,y_1,x_2,y_2)\) 表示时不同;也就是 说,只要两个矩形以 \((x_1,y_1,x_2,y_2)\) 表示时相同,就认为这两个矩形是同一个矩形,你应该 在你的答案里只算一次。

\(\color{#0066ff}{输入格式}\)

从标准输入中读入数据。

输入第一行,包含三个正整数 \(n,m,k\)。

输入接下来 \(n\) 行,每行包含 \(m\) 个正整数,第 \(i\) 行第 \(j\) 列表示矩阵中第 \(i\) 行第 \(j\) 列 中所填的正整数 \(a_{i,j}\)。

\(\color{#0066ff}{输出格式}\)

输出到标准输出中。

输入一行一个非负整数,表示你的答案。

\(\color{#0066ff}{输入样例}\)

2 3 2
1 2 1
2 1 2

\(\color{#0066ff}{输出样例}\)

6

\(\color{#0066ff}{数据范围与提示}\)

【样例 1 说明】

这些矩形是符合要求的: (1, 1, 1, 3),(1, 1, 2, 2),(1, 2, 1, 2),(1, 2, 2, 3),(2, 1, 2, 1),(2, 3, 2, 3)。

子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解 决一部分测试数据。

每个测试点的数据规模及特点如下表:

\(\color{#0066ff}{ 题解 }\)

显然可以二维前缀和\(O(n^4)\)暴力

正解

我们记录\(s[i][j]\)为第i行的前缀和

\(O(n^2)\)枚举子矩阵左右边界,把两列中间每一行利用前缀和\(O(1)\)缩成一个值存入a数组

统计这个序列的前缀和,枚举子矩阵下边界d, 不难发现,此时合法的上边界为\(a[d]-a[u-1]\equiv 0 \mod k\)的u

也就是说,当前的答案为上面与\(a[d]\)同余的值的个数

注意,0自己也有贡献,最后加上即可

这样就能\(O(n^3)\)解决本题

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 450;
LL n, m, k, ans;
LL s[maxn][maxn], a[maxn];
LL t[1005050]; int main() {
n = in(), m = in(), k = in();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
s[i][j] = s[i][j - 1] + in();
for(int i = 1; i <= m; i++)
for(int j = i; j <= m; j++) {
for(int v = 1; v <= n; v++) {
a[v] = (a[v - 1] + s[v][j] - s[v][i - 1]) % k;
ans += t[a[v]];
t[a[v]]++;
}
ans += t[0];
for(int v = 1; v <= n; v++) t[a[v]] = 0;
}
printf("%lld", ans);
return 0;
}

P3941 入阵曲的更多相关文章

  1. [luogu]P3941 入阵曲[前缀和][压行]

    [luogu]P3941 入阵曲 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然 ...

  2. 洛谷P3941入阵曲

    题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...

  3. Luogu P3941 入阵曲【前缀和】By cellur925

    题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前1 ...

  4. [洛谷P3941] 入阵曲

    题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...

  5. 落谷P3941 入阵曲

    题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...

  6. [洛谷P3941]:入阵曲(前缀和+桶)

    题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...

  7. luogu P3941 入阵曲

    嘟嘟嘟 这道题我觉得跟最大子矩阵那道题非常像,都是O(n4)二维前缀和暴力很好想,O(n3)正解需要点转化. O(n4)暴力就不说啦,二维前缀和,枚举所有矩形,应该能得55分. O(n3)需要用到降维 ...

  8. 【思维】Luogu P3941 入阵曲

    题目大意 洛谷链接 给出一个矩阵和 \(K\) ,问有多少子矩阵中的元素和能整除 \(K\). 数据范围 \(2\leq n,m\leq 400\),\(0\leq K\leq 10^6\). 思路 ...

  9. 题解 P3941 入阵曲

    题解 观察数据范围,可以 \(\mathcal O(n^2m^2)\) 暴力计算,而加上特殊性质,则可以骗到 \(75pts\) 正解: 我们发现,在一维情况下,\(\mod k\) 相同的前缀和相减 ...

随机推荐

  1. 运动事件Motion Events

    备注:运动事件,也是加速度时间,一般像摇晃手机就属于运动事件           监听运动事件对于UI控件有个前提就是监听对象必须是第一响应者(对于UIViewController视图控制器和UIAP ...

  2. C# 连接Mysql 字符串

    Database=XXX;Data Source=XXX;User Id=XXX;Password=XXX;pooling=false;CharSet=utf8;port=3306

  3. The Independent JPEG Group's JPEG software Android源码中 JPEG的ReadMe文件

    The Independent JPEG Group's JPEG software========================================== README for rele ...

  4. warning: control reaches end of non-void function 和 warning: implicit declaration of function 'rsgClearColor' is invalid in C99

    用gcc编译一个程序的时候出现这样的警告: warning: control reaches end of non-void function 它的意思是:控制到达非void函数的结尾.就是说你的一些 ...

  5. 为Docker镜像添加SSH服务

    一.基于commit命令创建 1. 首先下载镜像 $ docker run -it ubuntu:16.04 /bin/bash 2. 安装SSH服务 #更新apt缓存 root@5ef1d31632 ...

  6. FTP批量下载数据文件

    包含ftp的命令脚本,建立临时文件. ::服务器连接信息 set username=root set password=root set ip=xxx.xxx.xxx.xxx set RemoteDi ...

  7. ArcGIS10拓扑规则-面规则(转)

    ArcGIS10拓扑规则-面规则 原创 2013年12月27日 10:20:44 标签: ArcGIS 1879 ARCGIS 10 里提供的拓扑规则共32种,下面一一介绍: 首先介绍的对于面图层的拓 ...

  8. IPv6地址在URL上的格式

    转自:http://www.cnpaf.net/Class/RFC/200408/983.html 摘要 本文档定义了在WWW浏览器的URL中执行的文本IPv6地址的格式.在包括Microsoft的I ...

  9. Cocos2d-js 热更新学习笔记

    转载至: http://blog.csdn.net/pt_xxj/article/details/68927705 为什么还要再写一篇关于cocos2d js热更新的笔记,最单纯的想法就是记录心得,另 ...

  10. 关于c#运算符的简单应用。。。

    按套路,先罗列一下各种运算符. 运算符的分类: 算数: +-*/(加减乘除)%(取余,就是除不尽剩下的,77/10就余7),++(加加)--(减减) 关系:>  <  >=  < ...