51nod 1202 不同子序列个数 [计数DP]
1202 子序列个数
题目来源: 福州大学 OJ
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的**不同子序列**的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Input示例
4
1
2
3
2
Output示例
13
dp[i]为前i个字符中子序列的个数
当a[i]没有出现过的时候,dp[i] = dp[i-1]*2 + 1,因为相当于在dp[i-1]个子序列中新增一个a[i],再加上它本身。
当a[i]出现过的时候就要去重,减去以a[i]以前出现的位置的前一位子序列的个数=dp[vis[ a[i] ] - 1],因为a[i]为结尾重复了。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e5+5;
const int mod = 1000000007;
int a[N];
ll dp[N]; //dp[i]为前i个字符中子序列的个数
int vis[N];
int main()
{
int n;
while(cin >> n){
for(int i=1;i<=n;i++){
cin >> a[i];
}
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
dp[1]=1;
vis[a[1]]=1;
for(int i=2;i<=n;i++){
if(vis[a[i]]==0){
dp[i] = (dp[i-1]*2 + 1)%mod;
}else{
dp[i] = (dp[i-1]*2 - dp[ vis[a[i]] - 1 ] + mod) % mod;
}
vis[a[i]]=i; //标记a[i]出现的位置
}
cout<<dp[n]<<endl;
}
return 0;
}
// 1 2 3 2
//13
51nod 1202 不同子序列个数 [计数DP]的更多相关文章
- 51nod 1202 不同子序列个数(计数DP)
1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a ...
- hdu4632 Palindrome subsequence 回文子序列个数 区间dp
Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/ ...
- FZU 2129 子序列个数(DP)题解
题意:求子序列种数 思路:dp[i]代表到i的所有种数,把当前i放到末尾,那么转移方程dp[i] = dp[i - 1] + dp[i -1],但是可能存在重复,比如1 2 3 2,在第2位置的时候出 ...
- 51nod 1202 子序列个数
1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 子序列的定义:对于一个序列a=a[1],a[2] ...
- 1202 子序列个数(DP)
1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 子序列的定义:对于一个序列a=a[1],a[2],......a[ ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...
- 51nod 1202 线性dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202 1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 ...
- FZU 2129 子序列个数 (递推dp)
题目链接:http://acm.fzu.edu.cn/problem.php?pid=2129 dp[i]表示前i个数的子序列个数 当a[i]在i以前出现过,dp[i] = dp[i - 1]*2 - ...
- 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!
51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...
随机推荐
- leetcode 【 Remove Duplicates from Sorted List II 】 python 实现
题目: Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct ...
- Git上手:Git扫盲区
Git 自述Git 是由伟大的电脑程序员Linus Torvalds编写的一个开源的,分布式的版本控制系统软件. Git 核心原理Git 利用底层数据结构,通过指向索引对象的可变指针,保存文件快照. ...
- Python作业--登录接口
作业需求: 编写登陆接口 输入用户名密码 认证成功后显示欢迎信息 输错三次后锁定 实现思路: 1.从文件获取用户名密码 2.判断是否在黑名单中 3.验证用户名密码 成功:输出认证成功 错误:判断验证次 ...
- ssh.sh_for_ubuntu1604
#!/bin/bash sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/g' /etc/ssh/sshd_config ...
- shell文本处理工具总结
shell文本处理工具总结 为了效率,应该熟练的掌握自动化处理相关的知识和技能,能力就表现在做同样的一件事情,可以做的很好的同时,耗时还很短. 再次总结shell文本处理的相关规则,对提高软件调试效率 ...
- android 远程Service以及AIDL的跨进程通信
在Android中,Service是运行在主线程中的,如果在Service中处理一些耗时的操作,就会导致程序出现ANR. 但如果将本地的Service转换成一个远程的Service,就不会出现这样的问 ...
- hashcode和equals方法小记
在正确的逻辑下,两个对象的hashcode一样,不代表两个对象equals:两个对象equals,则hashcode一定一样 在HashSet集合中,是不允许有重复的元素的,那么,set怎么才知道元素 ...
- SQLEXPRESS 2012 安装NorthWind和Pub数据库
安装SQL后,学习时总是没有这两个示例数据库. 先从微软那里下载此文件. 网址:http://www.microsoft.com/en-us/download/details.aspx?id=2365 ...
- python3.6操作mysql
1.通过 pip 安装 pymysql 进入 cmd 输入 pip install pymysql 回车等待安装完成: 安装完成后出现如图相关信息,表示安装成功. 2.测试连接 import ...
- LeetCode -- Implement Stacks using Queue
Question: Implement the following operations of a queue using stacks. push(x) -- Push element x to t ...