UVA 11149.Power of Matrix-矩阵快速幂倍增
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 44
#define mod 10
int n;
struct matrix{
int f[maxn][maxn];
};
matrix sum(matrix a,matrix b){
int i,j;
matrix s;
for(i=;i<n;i++)
for(j=;j<n;j++)
s.f[i][j]=(a.f[i][j]+b.f[i][j])%mod;
return s;
}
matrix mul(matrix a,matrix b){
int i,j,k;
matrix s;
memset(s.f,,sizeof(s.f));
for(i=;i<n;i++)
for(j=;j<n;j++)
for(k=;k<n;k++)
s.f[i][j]=(s.f[i][j]+a.f[i][k]*b.f[k][j])%mod;
return s;
}
matrix pows(matrix e,int b){
matrix s,a;
int i,j,k;
a=e;
for(i=;i<n;i++)
for(j=;j<n;j++)
if(i==j)s.f[i][j]=;
else s.f[i][j]=;
while(b){
if(b&)
s=mul(s,a);
a=mul(a,a);
b=b>>;
}
return s;
}
matrix work(matrix e,int k){
matrix s,a,b;
if(k==)
return e;
a=work(e,k/);
s=sum(a,mul(a,pows(e,k/)));
if(k&)
s=sum(s,pows(e,k));
return s;
}
int main(){
int k;
while( cin>>n>>k){
if(n==)
break;
int i,j,a;
matrix e;
for(i=;i<n;i++)
{
for(j=;j<n;j++)
{
cin>>a;
e.f[i][j]=a%;
}
}
e=work(e,k);
for(i=;i<n;i++)
{
cout<<e.f[i][];
for(j=;j<n;j++)
cout<<" "<<e.f[i][j];
cout<<endl;
}
cout<<endl;
}
return ;
}
UVA 11149.Power of Matrix-矩阵快速幂倍增的更多相关文章
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- UVA 11149 - Power of Matrix(矩阵乘法)
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...
- BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- POJ 3233 Matrix Power Series (矩阵快速幂)
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...
- 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)
题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...
- UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...
随机推荐
- android 文件保存
将数据保存在外部存储器上 /* Checks if external storage is available for read and write */ public boolean isExter ...
- 如何高性能的给 UIImageView 加个圆角?
不好的解决方案 使用下面的方式会强制Core Animation提前渲染屏幕的离屏绘制, 而离屏绘制就会给性能带来负面影响,会有卡顿的现象出现 self.view.layer.cornerRadius ...
- 《Cracking the Coding Interview》——第1章:数组和字符串——题目1
2014-03-18 01:25 题目:给定一个字符串,判断其中是否有重复字母. 解法:对于可能有n种字符的字符集,用一个长度为n的数组统计每个字符的出现次数,大于1则表示有重复. 代码: // 1. ...
- USACO Section1.3 Combination Lock 解题报告
combo解题报告 —— icedream61 博客园(转载请注明出处)---------------------------------------------------------------- ...
- ffifdyop
题目地址:http://www.shiyanbar.com/ctf/2036 后台登陆 上来看到这个界面,果断先看一波源代码. 看到是拼接字符串进行sql查询,就想到了注入了. 但是很不幸的是md5( ...
- Jmeter 场景设计
今天的业务场景是: 1.管理员登录后台---登录成功后添加一个某类型的产品---产品添加成功后,再为该产品添加10个排期. 2.管理员登录后台--登录成功后添加多个不同类型产品---产品全部添加完成后 ...
- 5.0 Genymotion安装以及基础使用
后续考虑到python+appium多设备并发执行,需要多台手机,所以这里就直接更新一个jenymotion,后续多设备执行直接用真机+模拟器操作!Genymotion第一步:百度搜索[Genymot ...
- Ubuntu 安装jdk与tomcat
1.官网下载jdk,地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html ,选择 ...
- python命名空间、作用域、闭包与传值传引用
(以下内容,均基于python3) 最近在看python函数部分,讲到了python的作用域问题,然后又讲了Python的闭包问题. 在做作业的时候,我遇到了几个问题,下面先来看作业. 一. 作业1: ...
- 台州学院maximum cow训练记录
前队名太过晦气,故启用最大牛 我们的组队大概就是18年初,组队阵容是17级生詹志龙.陶源和16级的黄睿博. 三人大学前均无接触过此类竞赛,队伍十分年轻.我可能是我们队最菜的,我只是知道的内容最多,靠我 ...