Description

在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。
侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到1号岛屿上)。不过侦查部门还发现了这台机器只能够使用m次,所以我们只需要把每次任务完成即可。

Input

第一行一个整数n,代表岛屿数量。

接下来n-1行,每行三个整数u,v,w,代表u号岛屿和v号岛屿由一条代价为c的桥梁直接相连,保证1<=u,v<=n且1<=c<=100000。

第n+1行,一个整数m,代表敌方机器能使用的次数。

接下来m行,每行一个整数ki,代表第i次后,有ki个岛屿资源丰富,接下来k个整数h1,h2,…hk,表示资源丰富岛屿的编号。

Output

输出有m行,分别代表每次任务的最小代价。

Sample Input

10
1 5 13
1 9 6
2 1 19
2 4 8
2 3 91
5 6 8
7 5 4
7 8 31
10 7 9
3
2 10 6
4 5 7 8 3
3 9 4 6

Sample Output

12
32
22

HINT

对于100%的数据,2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1

/*
虚树+树形DP
设f[i]表示除掉以i为根的子树中所有关键点的最小花费,g[i]表示i是否是关键点。
f[i]=Σmin(g[e[i].v]?inf:f[e[i].v],e[i].w)
但是DP的复杂度是O(n)的,我们考虑每次的关键点是很少的,
我们可以只把这些关键点和对答案有用的点(lca)提出来,建一棵虚树,在虚树上DP。
如何建立虚树呢?用一个单调栈。
将关键点按照dfs序排序,栈中的元素形成一条由根节点出发的链,初始栈中只有根节点。
每次加入一个节点,求出节点与栈顶的LCA,将栈中所有深度大于LCA的节点全都弹掉。
然后将LCA和该节点入栈,注意有些重复的情况要考虑。
在这个模拟的DFS过程中顺便把DP做了即可。
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 250010
#define lon long long
#define inf 1000000000
using namespace std;
int head[N],a[N],n,m,tot,cnt;
int pos[N],dep[N],fa[N][],dis[N][];
int g[N],stack[N];
lon f[N];
struct node{int v,w,pre;}e[N*];
void add(int x,int y,int z){
e[++tot].v=y;
e[tot].w=z;
e[tot].pre=head[x];
head[x]=tot;
}
void dfs(int x){
pos[x]=++cnt;
dep[x]=dep[fa[x][]]+;
for(int i=head[x];i;i=e[i].pre)
if(e[i].v!=fa[x][]){
fa[e[i].v][]=x;
dis[e[i].v][]=e[i].w;
dfs(e[i].v);
}
}
bool cmp(int x,int y){
return pos[x]<pos[y];
}
int LCA(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int i=;i>=;i--)
if(dep[fa[x][i]]>=dep[y])
x=fa[x][i];
if(x==y) return x;
for(int i=;i>=;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][];
}
int calc(int x,int y){
int re=inf;
for(int i=;i>=;i--)
if(dep[fa[x][i]]>=dep[y])
re=min(re,dis[x][i]),x=fa[x][i];
return re;
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dfs();
for(int j=;j<=;j++)
for(int i=;i<=n;i++){
fa[i][j]=fa[fa[i][j-]][j-];
dis[i][j]=min(dis[i][j-],dis[fa[i][j-]][j-]);
}
int top=;
scanf("%d",&m);
for(int i=;i<=m;i++){
int k;scanf("%d",&k);
for(int j=;j<=k;j++) scanf("%d",&a[j]);
sort(a+,a+k+,cmp);
stack[++top]=;
f[]=;g[]=;
for(int j=;j<=k;j++){
int lca=LCA(stack[top],a[j]);
while(dep[stack[top]]>dep[lca]){
if(dep[stack[top-]]<=dep[lca]){
int tmp=min(g[top]?inf:f[top],(lon)calc(stack[top],lca));
stack[top--]=;
if(lca!=stack[top]){
stack[++top]=lca;
f[top]=;g[top]=;
}
f[top]+=tmp;
break;
}
else {
f[top-]+=min(g[top]?inf:f[top],(lon)calc(stack[top],stack[top-]));
stack[top--]=;
}
}
if(stack[top]!=a[j]){
stack[++top]=a[j];
f[top]=;
}
g[top]=;
}
while(top>){
f[top-]+=min(g[top]?inf:f[top],(lon)calc(stack[top],stack[top-]));
stack[top--]=;
}
printf("%lld\n",f[top--]);
}
return ;
}

消耗战(bzoj 2286)的更多相关文章

  1. 消耗战 bzoj 2286

    消耗战(2s 512MB)repair [问题描述] 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经 ...

  2. BZOJ 2286: [Sdoi2011]消耗战

    2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2082  Solved: 736[Submit][Status] ...

  3. bzoj 2286: [Sdoi2011]消耗战 虚树+树dp

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一 ...

  4. bzoj 2286 [Sdoi2011]消耗战(虚树+树上DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2286 [题意] 给定一棵树,切断一条树边代价为ci,有m个询问,每次问使得1号点与查询 ...

  5. bzoj 2286(洛谷 2495) [Sdoi2011]消耗战——虚树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2286 https://www.luogu.org/problemnew/show/P2495 ...

  6. bzoj 3611: [Heoi2014]大工程 && bzoj 2286: [Sdoi2011消耗战

    放波建虚树的模板. 大概是用一个栈维护根节点到当前关键点的一条链,把其他深度大于lca的都弹出去. 每次做完记得复原. 还有sort的时候一定要加cmp!!! bzoj 3611 #include&l ...

  7. BZOJ 2286: [Sdoi2011]消耗战 虚树 树形dp 动态规划 dfs序

    https://www.lydsy.com/JudgeOnline/problem.php?id=2286 wa了两次因为lca犯了zz错误 这道题如果不多次询问的话就是裸dp. 一棵树上多次询问,且 ...

  8. BZOJ.2286.[SDOI2011]消耗战(虚树 树形DP)

    题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的 ...

  9. Bzoj 2286 & Luogu P2495 消耗战(LCA+虚树+欧拉序)

    题面 洛谷 Bzoj 题解 很容易想到$O(nk)$的树形$dp$吧,设$f[i]$表示处理完这$i$颗子树的最小花费,同时再设一个$mi[i]$表示$i$到根节点$1$路径上的距离最小值.于是有: ...

  10. BZOJ 2286 [Sdoi2011]消耗战(虚树+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2286 [题目大意] 出一棵边权树,每次给出一些关键点,求最小边割集, 使得1点与各个关 ...

随机推荐

  1. centos7 php7 安装php扩展

    yum install php70w.x86_64 php70w-cli.x86_64 php70w-common.x86_64 php70w-gd.x86_64 php70w-ldap.x86_64 ...

  2. 处理nginx访问日志,筛选时间大于1秒的请求

    #!/usr/bin/env python ''' 处理访问日志,筛选时间大于1秒的请求 ''' with open('test.log','a+',encoding='utf-8') as f_a: ...

  3. 插入排序算法Java实现

    一. 算法描述 插入即表示将一个新的数据插入到一个有序数组中,并继续保持有序.例如有一个长度为N的无序数组,进行N-1次的插入即能完成排序:第一次,数组第1个数认为是有序的数组,将数组第二个元素插入仅 ...

  4. POJ 3171 区间最小花费覆盖 (DP+线段树

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4245   Accepted: 1429 D ...

  5. 008---Django的模版层

    python的模板:HTML代码+模板语法 <!--模版语法之变量--> <h1>Index </h1> <p>{{ name }}</p> ...

  6. 不同级域名中的 Cookie 共享

    HTTP 响应头中 Set-Cookie 行未指定 domain 时则设置访问的域名 seliote.com 可以设置 seliote.com(也可以写成 .seliote.com 意思一样) 与 w ...

  7. PowerCmd

    今天在手机上看慕课网,看到一个好玩的东西.Powercmd. 一开始的感觉是,妈的,我会cmd命令,为什么要用你的cmd? 后来,用了之后,感觉,嗯,还是Powercmd好用.功能强大. 我们来看看它 ...

  8. spring里面的context:component-scan

    原文:http://jinnianshilongnian.iteye.com/blog/1762632 component-scan的作用的自动扫描,把扫描到加了注解Java文件都注册成bean &l ...

  9. Column 'sort' specified twice错误

    我使用的是mybatis框架出现的这个问题,如果你们也出现了这个问题的豪华,我想你们的sql代码一定是复制的吧,额哈哈哈

  10. js和CSS3炫酷3D相册展示

    <!doctype html> <html> <head> <meta charset="UTF"> <title>js ...