N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大。
Input
第1行:包括2个数N, K(1 <= K <= N <= 50000)
第2 - N + 1行:每行2个数Wi, Pi(1 <= Wi, Pi <= 50000)
Output
输出单位体积的价值(用约分后的分数表示)。
Input示例
3 2
2 2
5 3
2 1
Output示例
3/4
————————————————————————————
第一眼看题目以为是贪心QAQ 后来发现不行
因为如果你现在已有的价值/体积是最佳
而现在有两个价值很小的物品 a b a价值比b大
但是a的体积远大于b的话 此时b肯定是更优的
所以正解应该是二分答案 判断是否合法就好辣
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,k;
int c[M],w[M];
LL sumx,sumy,ansx,ansy;
LL gcd(LL x,LL y){
while(y){
LL p=x%y;
x=y;
y=p;
}
return x;
}
struct node{double v; int pos;}e[M];
bool cmp(node a,node b){return a.v-b.v>1e-;}
bool check(double mid){
for(int i=;i<=n;i++) e[i].v=1.0*w[i]-1.0*c[i]*mid,e[i].pos=i;
sort(e+,e++n,cmp);
double sum=; sumx=; sumy=;
for(int i=;i<=k;i++){
sum+=e[i].v;
sumx+=w[e[i].pos];
sumy+=c[e[i].pos];
}
return sum>=;
}
int main()
{
n=read(); k=read();
for(int i=;i<=n;i++) c[i]=read(),w[i]=read();
double l=,r=;
while(r-l>1e-){
double mid=(l+r)/;
if(check(mid)) l=mid,ansx=sumx,ansy=sumy;
else r=mid;
}
LL d=gcd(ansx,ansy);
printf("%lld/%lld\n",ansx/d,ansy/d);
return ;
}

1257 背包问题 V3——分数规划的更多相关文章

  1. 51nod 1257 背包问题 V3

    1257 背包问题 V3 基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2.. ...

  2. 1257 背包问题 V3(二分)

    1257 背包问题 V3 3 秒 131,072 KB 80 分 5 级题 题意 : 从n个物品中选出k个,使单位体积价值最大 思路: 一开始正面想,试过很多种,排序什么的..总是结果不对,最后想到二 ...

  3. 51nod 1257 背包问题 V3(分数规划)

    显然是分数规划...主要是不会求分数的形式,看了题解发现自己好傻逼QAQ 还是二分L值算出d[]降序选K个,顺便记录选择时候的p之和与w之和就可以输出分数形式了... #include<iost ...

  4. 51nod 1257 背包问题 V3(这不是背包问题是二分)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 题解:不能按照单位价值贪心,不然连样例都过不了 要求的 ...

  5. 51nod 1257 01分数规划/二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...

  6. 51nod1257 背包问题 V3

    分数规划经典.开始精度1e-3/1e-4都不行,1e-5就A了 #include<cstdio> #include<cstring> #include<cctype> ...

  7. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  8. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  9. 【BZOJ 1758】【WC 2010】重建计划 分数规划+点分治+单调队列

    一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的 ...

随机推荐

  1. 【Python 2 到 3 系列】 print 是函数

    v3.0 以前,print一直作为语法结构存在,他是python语法的一部分:这个理解起来可能有点蹩脚,但的确是这样. print 一直被定以为一个statement,也就是说,他跟return/tr ...

  2. Allowed memory size of 134217728 bytes exhausted (tried to allocate 2 bytes)

    出现  Allowed memory size of 134217728 bytes exhausted (tried to allocate 2 bytes)时在php.ini文件中配置 memor ...

  3. Fruits【水果】

    Fruits Many of us love July because it's the month when nature's berries and stone fruits are in abu ...

  4. pyhton,数据类型

    标准数据类型 Python3 中有六个标准的数据类型: Number(数字) String(字符串) Tuple(元组) List(列表) Sets(集合) Dictionary(字典) 重点是: 类 ...

  5. PHP.31-TP框架商城应用实例-后台7-商品会员修改-页面优化,多表数据更新

    商品表修改功能 1.页面优化,类似添加页面 <layout name="layout" /> <div class="tab-div"> ...

  6. Hyper-V在线调整虚拟硬盘大小

    从Windows Server 2012 R2 开始,可以在线调整虚拟硬盘的大小了,这意味着当虚拟硬盘不够用时,我们在虚拟机运行的情况下直接扩展虚拟硬盘容量了.有人说这个有什么用?当然,实验室情况下, ...

  7. 二分查找问题(Java版)

    二分查找问题(Java版)   1.一般实现 package search;   /**  * @author lei 2011-8-17  */ public class BinarySearch ...

  8. 【Spiral Matrix II】cpp

    题目: Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. ...

  9. FlexGrid布局

    FlexGrid布局: Grid布局时网格大小是固定的,如果想网格大小不同的界面可以使用FlexGrid布局.FlexGrid是更加灵活的Grid布局.FlexGrid布局类是wx.FlexGridS ...

  10. windows下vim高亮systemverilog

    主要解决window环境下,vim高亮systemverilog的方法. 第一步:准备材料下载地址:https://files.cnblogs.com/files/aslmer/verilog_sys ...