[TJOI2007] 线段 (动态规划)
题目链接
Solution
传统的线性 \(dp\) .
\(f[i][0]\),\(f[i][1]\) 分别表示最后一次在 \(i\) ,然后在 左边或者右边的最小步数.
然后就每次根据上一次左边和右边的状态转移过来.
Code
#include<bits/stdc++.h>
#define N 20001
#define in(x) x=read()
using namespace std;
int l[N],r[N],n,ans=0x3f3f3f3f;
int v[N],f[N][2];
int read()
{
char ch=getchar(); int f=1,w=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
return f*w;
}
int main()
{
in(n);
for(int i=1;i<=n;i++)
in(l[i]),in(r[i]);
memset(f,127,sizeof(f));
f[1][0]=r[1]*2-l[1]-1;
f[1][1]=r[1]-1;
for(int i=2;i<=n;i++)
{
f[i][0]=min(f[i][0],f[i-1][0]+abs(l[i-1]-r[i])+r[i]-l[i]+1);
f[i][0]=min(f[i][0],f[i-1][1]+abs(r[i-1]-r[i])+r[i]-l[i]+1);
f[i][1]=min(f[i][1],f[i-1][0]+abs(l[i-1]-l[i])+r[i]-l[i]+1);
f[i][1]=min(f[i][1],f[i-1][1]+abs(r[i-1]-l[i])+r[i]-l[i]+1);
}
ans=min(f[n][1]+n-r[n],f[n][0]+n-l[n]);
cout<<ans<<endl;
}
[TJOI2007] 线段 (动态规划)的更多相关文章
- luogu [TJOI2007]线段
题目链接 luogu [TJOI2007]线段 题解 dp[i][0/1]第i行在左/右端点的最短路 瞎转移 代码 #include<bits/stdc++.h> using namesp ...
- [TJOI2007] 线段
因为每行必须走完才能到下一行,所以我们有两种决策: 1.最后留在线段左端点 2.最后留在线段右端点 这种存在状态转移且多决策的问题用动态规划来进行递推是最好不过的了. 所以我们设\(dp[i][0/1 ...
- 【洛谷 P3842】[TJOI2007]线段(DP)
裸DP.感觉楼下的好复杂,我来补充一个易懂的题解. f[i][0]表示走完第i行且停在第i行的左端点最少用的步数 f[i][1]同理,停在右端点的最少步数. 那么转移就很简单了,走完当前行且停到左端点 ...
- P3842 [TJOI2007]线段
最近多刷些dp,觉得这个算不上蓝题 在一个\(n\times n\)的平面上,在每一行中有一条线段,第\(i\)行的线段的左端点是\((i, L_i)\),右端点是\((i, R_i)\),其中\ ...
- DP百题练(一)
目录 DP百题练(一) 线性 DP 简述 Arithmetic Progressions [ZJOI2006]物流运输 LG1095 守望者的逃离 LG1103 书本整理 CH5102 移动服务 LG ...
- DP擎天
DP! 黄题: 洛谷P2101 命运石之门的选择 假装是DP(分治 + ST表) CF 982C Cut 'em all! 树形贪心 洛谷P1020 导弹拦截 单调队列水题 绿题: 洛谷P1594 护 ...
- NOIP前刷题记录
因为本蒻实在太蒻了...对于即将到来的NOIP2018ssfd,所以下决心要把自己近期做过的题目(衡量标准为洛谷蓝题难度或以上)整理一下,归归类,简单地写一下思路,就当作自己复习了吧qwq 本随笔持续 ...
- NOIP刷题
搜索 [NOIP2013]华容道 最短路+带剪枝的搜索,是一个思维难度比较大的题目. CF1064D Labyrinth 考虑贪心,用双向队列bfs [NOIP2017]宝藏 剪枝搜索出奇迹 题解:h ...
- NOIpDairy
Day 0 水水比赛 Day 1 写写Dp Part1:Dp基础练习 [HNOI2002]公交车路线 秒切,点数这么少,N这么大,目测O(N)+暴力更新 5min写完 P3842 [TJOI2007] ...
随机推荐
- ethereum(以太坊)(二)--合约中属性和行为的访问权限
pragma solidity ^0.4.0; contract Test{ /* 属性的访问权限 priveta public internal defualt internal interlnal ...
- hive 学习系列一(数据类型的定义)
数字类型(Numeric Types) 整型 TINYINT(取值范围:-128 -- 127) SMALLINT(取值范围:-32,768 to 32,767) INT/INTEGER(取值范围: ...
- python-含参函数
#!/usr/local/bin/python3 # -*- coding:utf-8 -*- ''' #----------函数位置参数和关键字参数---------- def test(x,y): ...
- 使用selenium模拟登录知乎
网上流传着许多抓取知乎数据的代码,抓取它的数据有一个问题一定绕不过去,那就是模拟登录,今天我们就来聊聊知乎的模拟登录. 获取知乎内容的方法有两种,一种是使用request,想办法携带cookies等必 ...
- HyperLedger Fabric 1.4 区块链技术形成(1.2)
在比特币诞生之时,没有区块链技术概念,当人们看到比特币在无中心干预的前提下,还能安全.可靠的运行,比特币网络打开了人们的想象空间:技术专家们开始研究比特币的底层技术,并抽象提取出来,形成区块链技术,或 ...
- B-树 分合之道
P.s:在代码里会同时用到向量和B-树的search,insert, remove,具体调用的是哪个结构的函数结合上下文就能看懂. 根据上一篇文章,我们对于这棵树的大致结构已经明了,那该如何有效利用并 ...
- 34-Cookie-based认证实现
新建MVC项目,然后用VSCode打开 dotnet new mvc --name MvcCookieAuthSample 在Controllers文件夹下新建AdminController.cs u ...
- Git-补丁文件交互
版本库间的交互是通过git push和/或git pull命令实现的,这是Git最主要的交互模式,但并不是全部.使用补丁文件是另外一种交互方式,适用于参与者众多的大型项目进行分布式开发. 创建补丁 G ...
- Android 本应用数据清除管理器DataCleanManager
1.整体分析 1.1.源代码先给出了,可以直接Copy. /** * 本应用数据清除管理器 */ public class DataCleanManager { /** * * 清除本应用内部缓存(/ ...
- 5,版本控制git --标签管理
打标签 像其他版本控制系统(VCS)一样,Git 可以给历史中的某一个提交打上标签,以示重要. 比较有代表性的是人们会使用这个功能来标记发布结点(v1.0 等等). 在本节中,你将会学习如何列出已有的 ...