CodeChef Dynamic GCD
嘟嘟嘟vjudge
我今天解决了一个历史遗留问题!
题意:给一棵树,写一个东西,支持一下两种操作:
1.\(x\)到\(y\)的路径上的每一个点的权值加\(d\)。
2.求\(x\)到\(y\)路径上所有点权的gcd。
树上路径操作自然能想到树剖,但问题在于区间加操作不好维护。
因此我们先考虑序列上的操作。
求gcd,方法除了辗转相除,还有更相减损之术啊!这个有一个非常好的性质,就是两数的gcd等于其中一个数和两数只差的gcd。两数之差,就让我们想到了差分。这样就能从区间修改变成了只修改连个点了!
因此我们维护两个东西:一是差分序列的区间gcd,支持单点修区间查;二是每一个数的权值,支持区间修单点查。对于一个修改区间\([L, R]\),我们只改\(L\)和\([R + 1]\)的差分值,然后查询的时候只要求\(a[L]\)和\([L + 1, R]\)的gcd就搞定了。
现在变成了树上。这时候,修改的时候,修改单点应该是\(x\)的重儿子和\(x\)所在链顶端的点。
然后查询的时候,求的是每一条链顶端权值和从\(x\)开始往上直到顶端节点儿子的gcd。然后把所有的链的值一块gcd一下。
需要注意的是,如果所有数相等,那么差分序列全是0,这时候要特判:一个数和\(0\)的gcd还是它本身。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e4 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
char s[2];
int n, m, a[maxn];
struct Edge
{
int nxt, to;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
}
int dep[maxn], fa[maxn], siz[maxn], son[maxn], dif[maxn];
In void dfs1(int now, int _f)
{
siz[now] = 1; dif[now] = a[now] - a[_f]; //可能有负数
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
dep[v] = dep[now] + 1, fa[v] = now;
dfs1(v, now);
siz[now] += siz[v];
if(!son[now] || siz[v] > siz[son[now]]) son[now] = v;
}
}
int dfsx[maxn], pos[maxn], top[maxn], cnt = 0;
In void dfs2(int now, int _f)
{
dfsx[now] = ++cnt; pos[cnt] = now;
if(son[now]) top[son[now]] = top[now], dfs2(son[now], now);
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f || v == son[now]) continue;
top[v] = v;
dfs2(v, now);
}
}
In int gcd(int a, int b) {return b ? gcd(b, a % b) : a;}
In int GCD(int a, int b)
{
if(!a || !b) return a | b;
return gcd(a, b);
}
int l[maxn << 2], r[maxn << 2], dat[maxn << 2], Gcd[maxn << 2], lzy[maxn << 2];
In void build(int L, int R, int now)
{
l[now] = L, r[now] = R;
if(L == R)
{
dat[now] = a[pos[L]];
Gcd[now] = dif[pos[L]];
return;
}
int mid = (L + R) >> 1;
build(L, mid, now << 1);
build(mid + 1, R, now << 1 | 1);
Gcd[now] = GCD(abs(Gcd[now << 1]), abs(Gcd[now << 1 | 1]));
}
In void pushdown(int now)
{
if(lzy[now])
{
dat[now << 1] += lzy[now]; dat[now << 1 | 1] += lzy[now];
lzy[now << 1] += lzy[now]; lzy[now << 1 | 1] += lzy[now];
lzy[now] = 0;
}
}
In void update_Sin(int now, int id, int d)
{
if(l[now] == r[now]) {Gcd[now] += d; return;}
int mid = (l[now] + r[now]) >> 1;
if(id <= mid) update_Sin(now << 1, id, d);
else update_Sin(now << 1 | 1, id, d);
Gcd[now] = GCD(abs(Gcd[now << 1]), abs(Gcd[now << 1 | 1]));
}
In void update_Lin(int L, int R, int now, int d)
{
if(l[now] == L && r[now] == R)
{
dat[now] += d, lzy[now] += d;
return;
}
pushdown(now);
int mid = (l[now] + r[now]) >> 1;
if(R <= mid) update_Lin(L, R, now << 1, d);
else if(L > mid) update_Lin(L, R, now << 1 | 1, d);
else update_Lin(L, mid, now << 1, d), update_Lin(mid + 1, R, now << 1 | 1, d);
}
In int query_Sin(int now, int id)
{
if(l[now] == r[now]) return dat[now];
pushdown(now);
int mid = (l[now] + r[now]) >> 1;
if(id <= mid) return query_Sin(now << 1, id);
else return query_Sin(now << 1 | 1, id);
}
In int query_Lin(int L, int R, int now)
{
if(l[now] == L && r[now] == R) return abs(Gcd[now]);
int mid = (l[now] + r[now]) >> 1;
if(R <= mid) return query_Lin(L, R, now << 1);
else if(L > mid) return query_Lin(L, R, now << 1 | 1);
else return GCD(query_Lin(L, mid, now << 1), query_Lin(mid + 1, R, now << 1 | 1));
}
In void update_path(int x, int y, int d)
{
while(top[x] ^ top[y])
{
if(dep[top[x]] < dep[top[y]]) swap(x, y);
if(son[x]) update_Sin(1, dfsx[son[x]], -d);
update_Sin(1, dfsx[top[x]], d);
update_Lin(dfsx[top[x]], dfsx[x], 1, d);
x = fa[top[x]];
}
if(dep[x] < dep[y]) swap(x, y);
if(son[x]) update_Sin(1, dfsx[son[x]], -d);
update_Sin(1, dfsx[y], d);
update_Lin(dfsx[y], dfsx[x], 1, d);
}
In int query_path(int x, int y)
{
int ret = 0;
while(top[x] ^ top[y])
{
if(dep[top[x]] < dep[top[y]]) swap(x, y);
int tp = query_Sin(1, dfsx[top[x]]);
if(x ^ top[x]) tp = GCD(tp, query_Lin(dfsx[top[x]] + 1, dfsx[x], 1));
ret = ret ? GCD(ret, tp) : tp;
x = fa[top[x]];
}
if(dep[x] < dep[y]) swap(x, y);
int tp = query_Sin(1, dfsx[y]);
if(x ^ y) tp = GCD(tp, query_Lin(dfsx[y] + 1, dfsx[x], 1));
ret = ret ? GCD(ret, tp) : tp;
return ret;
}
int main()
{
Mem(head, -1);
n = read();
for(int i = 1; i < n; ++i)
{
int x = read() + 1, y = read() + 1;
addEdge(x, y), addEdge(y, x);
}
for(int i = 1; i <= n; ++i) a[i] = read();
dfs1(1, 0), top[1] = 1, dfs2(1, 0);
build(1, n, 1);
m = read();
for(int i = 1; i <= m; ++i)
{
scanf("%s", s); int x = read() + 1, y = read() + 1;
if(s[0] == 'C')
{
int d = read();
update_path(x, y, d);
}
else write(query_path(x, y)), enter;
}
return 0;
}
CodeChef Dynamic GCD的更多相关文章
- codechef Dynamic GCD [树链剖分 gcd]
Dynamic GCD 题意:一棵树,字词树链加,树链gcd 根据\(gcd(a,b)=gcd(a,a-b)\) 得到\(gcd(a_1, a_2, ..., a_i) = gcd(a_1, a_1- ...
- CodeChef DGCD Dynamic GCD
CodeChef题面 Time limit 210 ms Code length Limit //内存限制也不说一下,真是的-- 50000 B OS Linux Language limit C, ...
- Codechef Dynamic Trees and Queries
Home » Practice(Hard) » Dynamic Trees and Queries Problem Code: ANUDTQSubmit https://www.codechef.co ...
- CC DGCD:Dynamic GCD——题解
https://vjudge.net/problem/CodeChef-DGCD https://www.codechef.com/problems/DGCD 题目大意: 给一颗带点权的树,两个操作: ...
- Dynamic Gcd
树链剖分+差分 直接区间加显然是不行的,由于gcd(a,b,c)=gcd(a,a-b,b-c),那么我们对这些数差分,然后就变成单点修改.原本以为这道题很简单,没想到这么麻烦,就膜了发代码. 首先我们 ...
- scau 2015寒假训练
并不是很正规的.每个人自愿参与自愿退出,马哥找题(马哥超nice么么哒). 放假第一周与放假结束前一周 2015-01-26 http://acm.hust.edu.cn/vjudge/contest ...
- BZOJ 5028 小z的加油站
bzoj链接 Time limit 10000 ms Memory limit 262144 kB OS Linux 感想 树上动态gcd的第二题也好了. [x] BZOJ 2257 [JSOI200 ...
- 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料
bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...
- CodeChef Gcd Queries
Gcd Queries Problem code: GCDQ Submit All Submissions All submissions for this problem are ava ...
随机推荐
- [开源]快速构建一个WebApi项目
项目代码:MasterChief.DotNet.ProjectTemplate.WebApi 示例代码:https://github.com/YanZhiwei/MasterChief.Project ...
- CAN总线学习记录之一:CAN简介
CAN 是 Controller Area Net 的缩写,即控制器局部网,是一种有效支持分布控制或实时控制的串行通信网络.CAN 是德国 Bosch 公司为汽车的监测.控制系统而设计的,如控制发动机 ...
- 用户及用户组管理(week1_day4)--技术流ken
本节内容 useradd userdel usermod groupadd groupdel 用户管理 为什么需要有用户? 1. linux是一个多用户系统 2. 权限管理(权限最小化) 用户:存在的 ...
- javascript基础修炼(10)——VirtualDOM和基本DFS
1. Virtual-DOM是什么 Virtual-DOM,即虚拟DOM树.浏览器在解析文件时,会将html文档转换为document对象,在浏览器环境中运行的脚本文件都可以获取到它,通过操作docu ...
- Haskell复习笔记(二)
Haskell中的递归 递归就是定义函数以调用自身的方式,关于递归解决问题的实例有很多,如斐波那契数列,还有汉诺塔问题,递归也正是Haskell中用来解决循环问题的关键. 自定义maxinum函数 m ...
- .Net Excel 导出图表Demo(柱状图,多标签页)
1 使用插件名称Epplus,多个Sheet页数据应用,Demo为柱状图(Epplus支持多种图表) 2 Epplus 的安装和引用 新建一个工程文件或控制台应用程序 打开 Vs2017 Tools ...
- JS的splice()方法在for循环中使用可能会遇到的坑
在写JS代码时,我们常常使用 splice 函数来删除数组中的元素,因为 splice 函数会直接对数组进行修改,从而不需再自己写一个算法来移动数组中的其他元素填补到被删除的位置.splice 功能十 ...
- Java开发笔记(三)Java帝国的特种官吏
上一篇文章介绍了Java工程的帝国区划,末尾给出了一段Java代码例子,这个代码虽然勉强能看懂,但是有些细节令人不甚了了.比如说“// 参观朱雀台”为何能够直接跟在当前行后面?“System.out. ...
- 【eclipse】eclipse报错:the resource is not on the build path of a java project
最近在eclipse中,使用svn导入svn上的一个maven项目,但是导入后类的包并没有以源码包的方式显示,而是以普通文件包的方式显示出来,在对类进行F3等操作时就报错:“the resource ...
- string[]转list<long>,List转字符串
List转字符串,用逗号隔开 List<string> list = new List<string>();list.Add("a");list.Add(& ...