import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters
TIME_STEP = 10 # rnn time step
INPUT_SIZE = 1 # rnn input size
LR = 0.02 # learning rate # show data
steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show() class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__() self.rnn = nn.RNN(
input_size=INPUT_SIZE,
hidden_size=32, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(32, 1) def forward(self, x, h_state):
# x (batch, time_step, input_size)
# h_state (n_layers, batch, hidden_size)
# r_out (batch, time_step, hidden_size)
r_out, h_state = self.rnn(x, h_state) outs = [] # save all predictions
for time_step in range(r_out.size(1)): # calculate output for each time step
outs.append(self.out(r_out[:, time_step, :]))
return torch.stack(outs, dim=1), h_state # instead, for simplicity, you can replace above codes by follows
# r_out = r_out.view(-1, 32)
# outs = self.out(r_out)
# outs = outs.view(-1, TIME_STEP, 1)
# return outs, h_state # or even simpler, since nn.Linear can accept inputs of any dimension
# and returns outputs with same dimension except for the last
# outs = self.out(r_out)
# return outs rnn = RNN()
print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss() h_state = None # for initial hidden state plt.figure(1, figsize=(12, 5))
plt.ion() # continuously plot for step in range(100):
start, end = step * np.pi, (step+1)*np.pi # time range
# use sin predicts cos
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size)
y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis]) prediction, h_state = rnn(x, h_state) # rnn output
# !! next step is important !!
h_state = h_state.data # repack the hidden state, break the connection from last iteration loss = loss_func(prediction, y) # calculate loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients # plotting
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.draw(); plt.pause(0.05) plt.ioff()
plt.show()

运行结果为:

用正弦曲线去拟合余弦曲线

RNN回归的更多相关文章

  1. 循环神经网络LSTM RNN回归:sin曲线预测

    摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]& ...

  2. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  3. TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  4. 对比学习用 Keras 搭建 CNN RNN 等常用神经网络

    Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 Ma ...

  5. Tensorflow实战第十一课(RNN Regression 回归例子 )

    本节我们会使用RNN来进行回归训练(Regression),会继续使用自己创建的sin曲线预测一条cos曲线. 首先我们需要先确定RNN的各种参数: import tensorflow as tf i ...

  6. TensorFlow从入门到理解(五):你的第一个循环神经网络RNN(回归例子)

    运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIM ...

  7. lecture7-序列模型及递归神经网络RNN

    Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...

  8. lecture7-序列模型及递归神经网络RNN(转载)

    Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...

  9. 递归神经网络(RNN,Recurrent Neural Networks)和反向传播的指南 A guide to recurrent neural networks and backpropagation(转载)

    摘要 这篇文章提供了一个关于递归神经网络中某些概念的指南.与前馈网络不同,RNN可能非常敏感,并且适合于过去的输入(be adapted to past inputs).反向传播学习(backprop ...

随机推荐

  1. lvds接口介绍

    1.项目简介 用索尼的imx264 sensor采集图像,在内部模数转换之后,由lvds接收,然后解码,最后送给后端显示 2.框图 imx264配置成从模式,由spi总线配置,需要由FPGA提供 行. ...

  2. 制作自己的Pod库(公有/私有)

    https://www.jianshu.com/p/ece0b5721461 2018.04.12 16:43* 字数 1168 阅读 244评论 0喜欢 1 目的:1.管理自己常用的类:2.组件化开 ...

  3. 分布式唯一ID生成方案是什么样的?(转)

    一.前言 分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表.因为数据量巨大一张表无法承接,就会对其进行分库分表. 但一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题, ...

  4. Linux(Ubuntu)使用日记------markdown文档转化为word文档

    Linux(Ubuntu)使用日记------markdown文档转化为word文档

  5. React react-fastclick-alt 移动端点击

    1. Install npm install --save-dev react-fastclick-alt 2. 用法 将元素或者component放在  <FastClick>...&l ...

  6. 初学tensorflow遇到的Error——UnrecognizedFlagError: Unknown command line flag 'f'

    最近在学习<tensorflow实战>时需要下载cifar10数据集,在cifar10目录下用到命令: import cifar10,cifar10_inputcifar10.maybe_ ...

  7. Fedora 24系统基本命令

    Fedora  24基本命令 一.     DNF软件管理 1.        修改配置:在/etc/dnf/dnf.conf中加入fastestmirror=true.keepcache=true ...

  8. rk3128 通过串口控制 GPIO

    2019-04-24 关键字: rk平台控制GPIO功能.rk串口控制引脚电平 本篇文章介绍了如何通过串口来控制 RK3128.RK3288 平台的 GPIO . 我们可以很便捷地通过串口命令来控制 ...

  9. 【XSY3344】连续段 DP 牛顿迭代 NTT

    题目大意 对于一个长度为 \(n\) 的排列 \(p\),我们称一个区间 \([l,r]\) 是连续的当且仅当 \((\max_{l\leq i\leq r}a_i)-(\min_{l\leq i\l ...

  10. Linux-I/O重定向和管道

    Linux I/O重定向 标准输入(stdin):文件描述符0 标准输入(stdout):文件描述符1 标准错误(stderr):文件描述符2 file descriptors(FD,文件描述符 或 ...