用sklearn封装的kmeans库
由于需要海量的进行聚类,所以将 k-means
算法自我封装成一个方便利用的库,可以直接调用得到最优的 k值
和 中心点
:
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-
# k-means算法
import numpy as np
from sklearn.cluster import KMeans
from sklearn import metrics
def calckmean(array, karr):
# array是一个二维数组
# X = [[1, 2, 3, 4], [5, 6, 7, 8], [3, 4, 5, 6]]
# k是待选取K值的数组
# karr = [2, 3, 4, 5, 8,...]
# 将原始数据由数组变成矩阵
x = np.array(array)
# 用来储存轮廓系数的数组
score = []
# 用来储存中心坐标点的数组
point = []
# 用来储存各个簇的坐标
coordinates = []
for k in karr:
kmeans_model = KMeans(n_clusters=k).fit(x)
# title = 'K = %s, 轮廓系数 = %.03f' % (k, metrics.silhouette_score(X, kmeans_model.labels))
# print(title)
# 获取中心点的坐标
counter_point = kmeans_model.cluster_centers_
# print("k=" + str(k) + "时的中心点为" + "\n" + str(counter_point))
# 记录分数
# print(metrics.silhouette_score(x, kmeans_model.labels_,metric='euclidean'))
score.append("%.03f" % (metrics.silhouette_score(x, kmeans_model.labels_)))
# 记录中心坐标
point.append(counter_point)
# 将坐标属于哪个簇的标签储存到数组
# k = 3 : [0 0 0 0 1 1 1 1 1 2 2 2 2 2]
# k = 4 : [1 1 1 1 0 0 0 0 0 3 2 2 3 2]
coordinates.append(kmeans_model.labels_)
# 返回轮廓系数最大的k值\中心坐标\分簇坐标
maxscore = max(score, default=0)
for i in range(0, len(score)):
if maxscore == score[i]:
# 储存分簇坐标的数组
coordinate = []
for j in range(0, len(point[i])):
temp = []
for item in zip(coordinates[i], array):
if item[0] == j:
temp.append(item[1])
coordinate.append(temp)
# 得到的样式为k=3,每个簇点的坐标群
# coordinate = [[[7, 1], [8, 2], [9, 1], [7, 1], [9, 3]],
# [[5, 8], [6, 6], [5, 7], [5, 6], [6, 7]],
# [[1, 1], [2, 3], [3, 2], [1, 2]]]
return karr[i], point[i], coordinate
调用的时候直接可以:
from kmeans import *
测试数据:
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-
from kmeans import *
x1 = np.array([1, 2, 3, 1, 5, 6, 5])
x2 = np.array([1, 3, 2, 2, 8, 6, 7])
# a = [[1, 2, 3, 1, 5, 6, 5], [1, 3, 2, 2, 8, 6, 7], [3, 5, 9, 4, 7, 6, 1], [1, 5, 3, 4, 8, 6, 7], [5, 1, 2, 3, 6, 9, 4],[8, 4, 6, 2, 1, 6, 3]]
a = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]]
karr = [2, 3, 4, 5, 8]
# print(np.array(a))
# print(list(zip(x1, x2)))
k, point = calckmean(a, karr)
print("最好的可以分成" + str(k) + "个簇,中心点为" + "\n" + str(point))
用sklearn封装的kmeans库的更多相关文章
- 使用sklearn估计器构建K-Means聚类模型
实例要求:以sklearn库自带的iris数据集为例,使用sklearn估计器构建K-Means聚类模型,并且完成预测类别功能以及聚类结果可视化. 实例代码: import pandas as pd ...
- 封装ios静态库碰到的一些问题(一)
封装IOS动态库,碰到的第一个问题,就是资源文件的问题,如果将你的程序封装成为静态库,那么静态库中不会包含资源文件和xib文件,这个时候就需要自己封装bundle文件了,而笔者开发环境默认是xcode ...
- 函数return/获取元素样式/封装自己的库
一:函数return <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type&qu ...
- JsQuick--个人封装的Js库
JsQuick 该库为本人封装的Js库,尚未进行浏览器兼容 /** * 快速框架 版本:1.0.0 * 日期:2015.02.26 * 作者:简楚恩 */ /** * 快速获取控件类 */ var $ ...
- C# 将 WebService 封装成动态库
C# 将 WebService 封装成动态库 服务与服务之间的远程调用,经常会通过Web Service来实现,Web Service是支持跨语言调用的,可以是java调用c++或c#调用java等, ...
- sklearn中的KMeans算法
1.聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇).这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布. 2.KMeans算法将一 ...
- 封装一个postMessage库,进行iframe跨域交互
这是近期个人在开发chrome插件时的其中一个小总结.还有很多没有总结出来.因为目前插件还在迭代中,(herry菌插件,用于B站C站),属于个人业余的一个小项目.还有很多功能没有实现,以及还需要再看能 ...
- C++封装静态链接库和使用
零碎记事 距离上次发博客已经有一年半了,转眼间我也是从做图像研究到了做游戏开发,说起来看看前面的博文,本来就有前兆的东西呢(笑)......因为主要还是在使用虚幻引擎,所以C++的东西会碰到多一些. ...
- faster_rcnn c++版本的 caffe 封装,动态库(2)
摘要: 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ github上的代码链接,求给星星:) https:// ...
随机推荐
- BeautifulSoup4库
BeautifulSoup4库 和lxml一样,Beautiful Soup也是一个HTML/XML的解析器,主要的功能也是如何解析和提取 HTML/XML数据.lxml只会局部遍历,而Beautif ...
- 蓝桥杯 穿越雷区(bfs)
题目描述 X星的坦克战车很奇怪,它必须交替地穿越正能量辐射区和负能量辐射区才能保持正常运转,否则将报废.某坦克需要从A区到B区去(A,B区本身是安全区,没有正能量或负能量特征),怎样走才能路径最短? ...
- qt之数据库对照片的存取
需要确保数据库连接上 QOCI为驱动 //oracle 数据库连接 //需要在执行文件目录添加 oci.dll oraociei11.dll QSqlDatabase db = QSqlDatabas ...
- 关于eclipse使用thymeleaf时,提示标签不显示及后续问题的解方法
因为thymeleaf 使用快捷键提示,不提示标签信息. 在使用网上说的的install new software安装插件的时候 报错: Unable to read repository at ht ...
- [转]HTML5 script 标签的 crossorigin 属性到底有什么用?
HTML5 script 标签的 crossorigin 属性到底有什么用? 最近Bootstrap 4已经正式发布了,可能已经有爱尝鲜的小伙伴在 alpha 阶段就尝试过 BS4.不过今天要说的不是 ...
- 奖品列表组件【仿swiper】
最近lz在做项目的一些优化,发现我的项目里有个奖品列表的功能:我们之前是引入swiper这个库去做的:swiper库的滑动效果确实比较好看,但是js文件以及css文件相对是比较大的:考虑到这个小小的需 ...
- C++输出
setiosflags 意思就是设置输入输出的标志iso::fixed 是操作符setiosflags 的参数之一,该参数指定的动作是以带小数点的形式表示浮点数,并且在允许的精度范围内尽可能的把数字移 ...
- On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN
Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...
- Spring SpringMVC SpringBoot SpringCloud概念、关系及区别
一.正面解读: Spring主要是基于IOC反转Beans管理Bean类,主要依存于SSH框架(Struts+Spring+Hibernate)这个MVC框架,所以定位很明确,Struts主要负责表示 ...
- Charles抓包软件简介
Charles简介: Charles是一款抓包神器,因为他是基于 java 开发的,所以跨平台,Mac.Linux.Window下都是可以使用的,确保安装之前已经安装了JDK.Charles官网地址: ...