链接:https://ac.nowcoder.com/acm/problem/21303
来源:牛客网
题目描述

给你一个合法的括号序列s1,每次你可以删除一个"()"
你可以删除0个或者多个"()"
求能否删成另一个括号序列s2
输入描述:
第一行输入一个字符串s (2 ≤ |s| ≤ 100)
第二行输入一个字符串t (2 ≤ |t| ≤ 100 ) 输出描述:
如果可以输出"Possible"
否则输出"Impossible"
示例1
输入
复制

(())
() 输出
复制

Possible
示例2
输入
复制

()
() 输出
复制

Possible
示例3
输入
复制

(()()())
((())) 输出
复制

Impossible
示例4
输入
复制

((())((())())())
(()(())()) 输出
复制

Possible
示例5
输入
复制

((())((())())())
((()()()()())) 输出
复制

Impossible
题意:给出一个两个合法的括号序列s1,s2,对s1可以不断删除(),注意(和)要相邻,比如(()())可以删除成(())或者()或者直接删除成空串,但是不嫩删除成()(),求是否可以变成s2
题解:dp[i][j][k]表示s1位置1...i在删除掉若干个完整的()并且多删除k个(正好对应s2的1...j是否可行,由于()必须连续,所以当k>0的时候,不能不删除东西(即使s1[i]==s2[j]),也就是只有k==0的时候才能进行不删除的更新
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
int n,m,i,j,k;char a[N],b[N];
int dp[N][N][N];
int main()
{
scanf("%s%s",a+,b+);
n=strlen(a+),m=strlen(b+);
dp[][][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=;k<=n;k++){
if(a[i]=='('){
if(i&&k)dp[i][j][k]=max(dp[i-][j][k-],dp[i][j][k]);
if(i&&j&&a[i]==b[j]&&(!k))dp[i][j][k]=max(dp[i][j][k],dp[i-][j-][k]);
}
else{
if(i)dp[i][j][k]=max(dp[i-][j][k+],dp[i][j][k]);
if(i&&j&&a[i]==b[j]&&(!k))dp[i][j][k]=max(dp[i][j][k],dp[i-][j-][k]);
}
} }
}
if(dp[n][m][])printf("Possible\n");
else printf("Impossible\n");
return ;
}

[删括号][判断可行性的dp]的更多相关文章

  1. 删括号(dp)

    题目链接:https://ac.nowcoder.com/acm/problem/21303 思路:删括号的时候一定要时刻保证左括号数量比右括号多,我们可以定义dp[i][j][k]表示考虑AA前i个 ...

  2. hdu 3622(二分+2-sat判断可行性)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3622 思路:二分是容易想到的,由于题目中有明显的矛盾关系,因此可以用2-sat来验证其可行性.关键是如 ...

  3. 括号序列(区间dp)

    括号序列(区间dp) 输入一个长度不超过100的,由"(",")","[",")"组成的序列,请添加尽量少的括号,得到一 ...

  4. POJ3189二分最大流(枚举下界,二分宽度,最大流判断可行性)

    题意:       有n头猪,m个猪圈,每个猪圈都有一定的容量(就是最多能装多少只猪),然后每只猪对每个猪圈的喜好度不同(就是所有猪圈在每个猪心中都有一个排名),然后要求所有的猪都进猪圈,但是要求所有 ...

  5. POJ 2955 Brackets --最大括号匹配,区间DP经典题

    题意:给一段左右小.中括号串,求出这一串中最多有多少匹配的括号. 解法:此问题具有最优子结构,dp[i][j]表示i~j中最多匹配的括号,显然如果i,j是匹配的,那么dp[i][j] = dp[i+1 ...

  6. POJ 2955 括号匹配,区间DP

    题意:给你一些括号,问匹配规则成立的括号的个数. 思路:这题lrj的黑书上有,不过他求的是添加最少的括号数,是的这些括号的匹配全部成立. 我想了下,其实这两个问题是一样的,我们可以先求出括号要匹配的最 ...

  7. PTA L3-020 至多删三个字符 (序列dp/序列自动机)

    给定一个全部由小写英文字母组成的字符串,允许你至多删掉其中 3 个字符,结果可能有多少种不同的字符串? 输入格式: 输入在一行中给出全部由小写英文字母组成的.长度在区间 [4, 1] 内的字符串. 输 ...

  8. 九度OJ 1153:括号匹配问题 (DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5193 解决:2248 题目描述: 在某个字符串(长度不超过100)中有左括号.右括号和大小写字母:规定(与常见的算数式子一样)任何一个左括 ...

  9. [LeetCode] 22. 括号生成(回溯/DP)

    题目 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合. 例如,给出 n = 3,生成结果为: [ "((()))", "(()( ...

随机推荐

  1. js 表格操作(兼容模式

    用insertRow,insertRow操作表格时,发现在谷歌浏览器中顺序和IE是反的 // 表格新增行 function addTableRow($id,$arr,$rowAttr){ var ta ...

  2. yumiot的发展历程。

    yumiot,大家可能没有听说过,不过作为物联网行业一颗冉冉升起的新星,大家有必要加深这一方面的了解.我先简单介绍一下这个企业.物联网,作为国家大力扶持的行业,相信大家身边也有很多这样的物联网企业.不 ...

  3. linux驱动由浅入深系列:PBL-SBL1-(bootloader)LK-Android启动过程详解之一(高通MSM8953启动实例)

    转自:http://blog.csdn.net/radianceblau/article/details/73229005 http://www.aiuxian.com/article/p-14142 ...

  4. react系列笔记:第二记-中间件

    中间件所做的事情就是在action发起后,到reducer之前做扩展,实现的方式是对store的dispatch进行包装 store.dispatch => [middlewales] => ...

  5. java 构造方法详解

    构造方法(构造器)    是一种特殊的方法,该方法只有功能:构造对象    特点:        1.没有返回值        2.构造方法的名称一定和类名一致        3.不能在构造方法中写r ...

  6. vim打开txt文件看到^@字符

    '\0'是不可见字符,使用vim编辑器查看的文本文件中如果包含'\0'字符,vim会自动将'\0'字符转换为^@字符. 看下面的代码: #include <stdio.h> #includ ...

  7. ORACLE存储过程定时器例子(存储过程变量赋值)

    CREATE OR REPLACE PROCEDURE SP_DSSJTS_XMRSLOG as str1 ); str2 ); str3 ); begin select 'xmrslog_'||ex ...

  8. Python 语法1

    函数的定义: """ def 函数名(): 函数内容,函数内容, 函数内容,函数内容, """ ////////////////////// ...

  9. CSS效果:焦点图片

    HTML: <html lang="en"> <head> <meta charset="UTF-8"> <meta ...

  10. dos6章

    现在开始: 在CMD使用IF /?打开IF的系统帮助(自己看我就不全部列出来了),我们会发现IF有3种基本的用法!执行批处理程序中的条件处理. IF [NOT] ERRORLEVEL number c ...