PL-SVO公式推导及代码解析:地图点重投影和特征对齐
对当前帧进行地图点重投影和特征对齐
// map reprojection & feature alignment
SVO_START_TIMER("reproject");
reprojector_.reprojectMap(new_frame_, overlap_kfs_);
SVO_STOP_TIMER("reproject");
在processframe函数中在进行初始的稀疏图像对齐之后,进一步进行地图投影和特征对齐,对新一帧图像添加特征点,由reprojectMap接口进入
Reprojector reprojector_; //把其它关键帧中的点投影到当前帧中 FramePtr new_frame_; // 当前帧
vector< pair<FramePtr,size_t> > overlap_kfs_; // 具有重叠视野的所有关键帧。 配对数字指明观察到的公共地图点数。
void Reprojector::reprojectMap(
FramePtr frame,
std::vector< std::pair<FramePtr,std::size_t> >& overlap_kfs)
{
resetReprojGrid();
resetReprojGrid(); // 重置函数
// Identify those Keyframes which share a common field of view.
SVO_START_TIMER("reproject_kfs");
list< pair<FramePtr,double> > close_kfs;
map_.getCloseKeyframes(frame, close_kfs);
void Map::getCloseKeyframes(
const FramePtr& frame,
std::list< std::pair<FramePtr,double> >& close_kfs);
const FramePtr& frame; //当前图像帧
std::list< std::pair<FramePtr,double> >& close_kfs ;///存储和当前帧接近的关键帧指针以及它们之间的距离。
根据它们的接近程度对KF进行重叠排序(列表中的第二个值)
close_kfs.sort(boost::bind(&std::pair<FramePtr, double>::second, _1) <
boost::bind(&std::pair<FramePtr, double>::second, _2));
重新投影具有重叠的最近N kfs的所有地图特征。
size_t n_kfs = ;
overlap_kfs.reserve(options_.max_n_kfs);
for(auto it_frame=close_kfs.begin(), ite_frame=close_kfs.end();
it_frame!=ite_frame && n_kfs<options_.max_n_kfs; ++it_frame, ++n_kfs)
{
FramePtr ref_frame = it_frame->first;
// add the current frame to the (output) list of keyframes with overlap
// initialize the counter of candidates from this frame (2nd element in pair) to zero
overlap_kfs.push_back(pair<FramePtr,size_t>(ref_frame,));
// Consider for candidate each mappoint in the ref KF that the current (input) KF observes
// We only store in which grid cell the points fall.
// Add each corresponding valid new Candidate to its cell in the grid.
int num_pt_success = setKfCandidates( frame, ref_frame->pt_fts_ );
overlap_kfs.back().second += num_pt_success;
// Add each line segment in the ref KF that the current (input) KF observes
int num_seg_success = setKfCandidates( frame, ref_frame->seg_fts_ );
overlap_kfs.back().second += num_seg_success;
}
SVO_STOP_TIMER("reproject_kfs");
考虑当前(输入)KF观察到的参考KF中的每个mappoint的候选者
我们只存储点落在哪个网格单元格中。
将每个对应的有效新Candidate添加到网格中的单元格中。
template<class FeatureT>
int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)
{
int candidate_counter = ;
for(auto it=fts.begin(), ite_ftr=fts.end(); it!=ite_ftr; ++it)
{
// check if the feature has a 3D object assigned
if((*it)->feat3D == NULL)
continue;
// make sure we project a point only once
if((*it)->feat3D->last_projected_kf_id_ == frame->id_)
continue;
(*it)->feat3D->last_projected_kf_id_ = frame->id_;
if(reproject(frame, (*it)->feat3D))
// increment the number of candidates taken successfully
candidate_counter++;
}
return candidate_counter;
}
int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)
把地图点和投影到当前帧中的像素点的匹配对存储到 grid_.cells 中
bool Reprojector::reproject(FramePtr frame, Point* point)
{
// get position in current frame image of the world 3D point
Vector2d cur_px(frame->w2c(point->pos_));
if(frame->cam_->isInFrame(cur_px.cast<int>(), )) // 8px is the patch size in the matcher
{
// get linear index (wrt row-wise vectorized grid matrix)
// of the image grid cell in which the point px lies
const int k = static_cast<int>(cur_px[]/grid_.cell_size)*grid_.grid_n_cols
+ static_cast<int>(cur_px[]/grid_.cell_size);
grid_.cells.at(k)->push_back(PointCandidate(point, cur_px));
return true;
}
return false;
}
数据类型的定义
struct PointCandidate {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Point* pt; //!< 3D point.
Vector2d px; //!< projected 2D pixel location.
PointCandidate(Point* pt, Vector2d& px) : pt(pt), px(px) {}
};
// A cell is just a list of Reprojector::Candidate
typedef std::list<PointCandidate, aligned_allocator<PointCandidate> > Cell;
typedef std::vector<Cell*> CandidateGrid; struct LineCandidate {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
LineSeg* ls; //!< 3D point.
Vector2d spx;
Vector2d epx;
LineCandidate(LineSeg* ls, Vector2d& spx, Vector2d& epx) : ls(ls), spx(spx), epx(epx) {}
};
/// The candidate segments are collected in a single list for the whole image.
/// There is no clear heuristic about how to discretize the image space for the segment case.
typedef std::list<LineCandidate, aligned_allocator<LineCandidate> > LineCandidates;
typedef std::vector<LineCandidates*> LineCandidateGrid; /// The grid stores a set of candidate matches. For every grid cell we try to find one match.
struct Grid
{
CandidateGrid cells;
vector<int> cell_order;
int cell_size;
int grid_n_cols;
int grid_n_rows;
}; struct GridLs
{
LineCandidateGrid cells;
vector<int> cell_order;
int cell_size;
int grid_n_cols;
int grid_n_rows;
}; Grid grid_;
GridLs gridls_;
Matcher matcher_;
Map& map_;
现在投影所有地图坐标
点坐标
// Now project all map candidates
// (candidates in the map are created from converged seeds)
SVO_START_TIMER("reproject_candidates");
// Point candidates
// (same logic as above to populate the cell grid but taking candidate points from the map object)
setMapCandidates(frame, map_.point_candidates_);
线坐标
// Segment candidates
setMapCandidates(frame, map_.segment_candidates_);
SVO_STOP_TIMER("reproject_candidates");
Map& map_; //地图类
MapPointCandidates point_candidates_; // 收敛的3D点的容器,尚未分配给两个关键帧。
MapSegmentCandidates segment_candidates_; /////尚未分配给两个关键帧的融合3D点的容器。
class MapPointCandidates
{
public:
typedef pair<Point*, PointFeat*> PointCandidate;
typedef list<PointCandidate> PointCandidateList; /// The depth-filter is running in a parallel thread and fills the canidate list.
/// This mutex controls concurrent access to point_candidates.
boost::mutex mut_; /// Candidate points are created from converged seeds.
/// Until the next keyframe, these points can be used for reprojection and pose optimization.
PointCandidateList candidates_;
list< Point* > trash_points_; MapPointCandidates();
~MapPointCandidates(); /// Add a candidate point.
void newCandidatePoint(Point* point, double depth_sigma2); /// Adds the feature to the frame and deletes candidate from list.
void addCandidatePointToFrame(FramePtr frame); /// Remove a candidate point from the list of candidates.
bool deleteCandidatePoint(Point* point); /// Remove all candidates that belong to a frame.
void removeFrameCandidates(FramePtr frame); /// Reset the candidate list, remove and delete all points.
void reset(); void deleteCandidate(PointCandidate& c); void emptyTrash();
};
void MapPointCandidates::deleteCandidate(PointCandidate& c)
{
// camera-rig: another frame might still be pointing to the candidate point
// therefore, we can't delete it right now.
delete c.second; c.second=NULL;
c.first->type_ = Point::TYPE_DELETED;
trash_points_.push_back(c.first);
}
template<class MapCandidatesT>
void Reprojector::setMapCandidates(FramePtr frame, MapCandidatesT &map_candidates)
{
boost::unique_lock<boost::mutex> lock(map_candidates.mut_); // the mutex will be unlocked when out of scope
auto it=map_candidates.candidates_.begin();
while(it!=map_candidates.candidates_.end())
{
if(!reproject(frame, it->first))
{
// if the reprojection of the map candidate point failed,
// increment the counter of failed reprojections (assess the point quality)
it->first->n_failed_reproj_ += ;
if(it->first->n_failed_reproj_ > )
{
// if the reprojection failed too many times, remove the map candidate point
map_candidates.deleteCandidate(*it);
it = map_candidates.candidates_.erase(it);
continue;
}
}
++it;
} // end-while-loop
}
现在我们浏览每个网格单元并选择一个匹配点。最后,我们每个细胞最多应该有一个重新投射点。
SVO_START_TIMER("feature_align");
for(size_t i=; i<grid_.cells.size(); ++i)
{
// we prefer good quality points over unkown quality (more likely to match)
// and unknown quality over candidates (position not optimized)
// we use the random cell order to visit cells uniformly on the grid
if(refineBestCandidate(*grid_.cells.at(grid_.cell_order[i]), frame))
++n_matches_;
if(n_matches_ > (size_t) Config::maxFts())
break; // the random visit order of cells assures uniform distribution
// of the features even if we break early (maxFts reached soon)
}
我们更喜欢质量好的点而不是未知质量(更可能匹配)和未知质量而不是候选者(位置未优化)
我们使用随机单元格顺序在网格上统一访问单元格
bool Reprojector::refineBestCandidate(Cell& cell, FramePtr frame)
{
// sort the candidates inside the cell according to their quality
cell.sort(boost::bind(&Reprojector::pointQualityComparator, _1, _2));
Cell::iterator it=cell.begin();
// in principle, iterate through the whole list of features in the cell
// in reality, there is maximum one point per cell, so the loop returns if successful
while(it!=cell.end())
{
++n_trials_;
// Try to refine the point feature in frame from current initial estimate
bool success = refine( it->pt, it->px, frame );
// Failed or not, this candidate was finally being erased in original code
it = cell.erase(it); // it takes next position in the list as output of .erase
if(success)
// Maximum one point per cell.
return true;
}
return false;
}
尝试从当前初始估计中细化帧中的点要素
bool Reprojector::refine(Point* pt, Vector2d& px_est, FramePtr frame)
{
if(pt->type_ == Point::TYPE_DELETED)
return false; bool found_match = true;
if(options_.find_match_direct)
// refine px position in the candidate by directly applying subpix refinement
// internally, it is optimizing photometric error
// of the candidate px patch wrt the closest-view reference feature patch
found_match = matcher_.findMatchDirect(*pt, *frame, px_est);
// TODO: What happens if options_.find_match_direct is false??? Shouldn't findEpipolarMatchDirect be here? // apply quality logic
{
if(!found_match)
{
// if there is no match found for this point, decrease quality
pt->n_failed_reproj_++;
// consider removing the point from map depending on point type and quality
if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_failed_reproj_ > )
map_.safeDeletePoint(pt);
if(pt->type_ == Point::TYPE_CANDIDATE && pt->n_failed_reproj_ > )
map_.point_candidates_.deleteCandidatePoint(pt);
return false;
}
// if there is successful match found for this point, increase quality
pt->n_succeeded_reproj_++;
if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_succeeded_reproj_ > )
pt->type_ = Point::TYPE_GOOD;
} // create new point feature for this frame with the refined (aligned) candidate position in this image
PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
frame->addFeature(new_feature); // Here we add a reference in the feature to the 3D point, the other way
// round is only done if this frame is selected as keyframe.
// TODO: why not give it directly to the constructor PointFeat(frame.get(), pt, it->px, matcher_.serach_level_)
new_feature->feat3D = pt; PointFeat* pt_ftr = static_cast<PointFeat*>( matcher_.ref_ftr_ );
if(pt_ftr != NULL)
{
if(pt_ftr->type == PointFeat::EDGELET)
{
new_feature->type = PointFeat::EDGELET;
new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
new_feature->grad.normalize();
}
} // If the keyframe is selected and we reproject the rest, we don't have to
// check this point anymore.
// it = cell.erase(it); // Maximum one point per cell.
return true;
}
通过直接应用子像素细化来细化候选者中的px位置
在内部,它正在优化最近视图参考特征补丁的候选px补丁的光度误差
bool Matcher::findMatchDirect(
const Point& pt,
const Frame& cur_frame,
Vector2d& px_cur)
{
// get reference feature in closest view (frame)
if(!pt.getCloseViewObs(cur_frame.pos(), ref_ftr_))
return false; if(!ref_ftr_->frame->cam_->isInFrame(
ref_ftr_->px.cast<int>()/(<<ref_ftr_->level), halfpatch_size_+, ref_ftr_->level))
return false; // warp affine
warp::getWarpMatrixAffine(
*ref_ftr_->frame->cam_, *cur_frame.cam_, ref_ftr_->px, ref_ftr_->f,
(ref_ftr_->frame->pos() - pt.pos_).norm(),
cur_frame.T_f_w_ * ref_ftr_->frame->T_f_w_.inverse(), ref_ftr_->level, A_cur_ref_);
search_level_ = warp::getBestSearchLevel(A_cur_ref_, Config::nPyrLevels()-);
// is img of ref_frame fully available at any time? that means keeping stored previous images, for how long?
warp::warpAffine(A_cur_ref_, ref_ftr_->frame->img_pyr_[ref_ftr_->level], ref_ftr_->px,
ref_ftr_->level, search_level_, halfpatch_size_+, patch_with_border_);
// patch_with_border_ stores the square patch (of pixel intensities) around the reference feature
// once the affine transformation is applied to the original reference image
// the border is necessary for gradient operations (intensities at the border must be precomputed by interpolation too!)
createPatchFromPatchWithBorder(); // px_cur should be set
Vector2d px_scaled(px_cur/(<<search_level_)); bool success = false;
PointFeat* pt_ftr = static_cast<PointFeat*>(ref_ftr_);
if(pt_ftr->type == PointFeat::EDGELET)
{
Vector2d dir_cur(A_cur_ref_*pt_ftr->grad);
dir_cur.normalize();
success = feature_alignment::align1D(
cur_frame.img_pyr_[search_level_], dir_cur.cast<float>(),
patch_with_border_, patch_, options_.align_max_iter, px_scaled, h_inv_);
}
else
{
success = feature_alignment::align2D(
cur_frame.img_pyr_[search_level_], patch_with_border_, patch_,
options_.align_max_iter, px_scaled);
}
px_cur = px_scaled * (<<search_level_);
return success;
}
特征细化
bool align2D(
const cv::Mat& cur_img,
uint8_t* ref_patch_with_border,
uint8_t* ref_patch,
const int n_iter,
Vector2d& cur_px_estimate,
bool no_simd)
{
#ifdef __ARM_NEON__
if(!no_simd)
return align2D_NEON(cur_img, ref_patch_with_border, ref_patch, n_iter, cur_px_estimate);
#endif const int patch_size_ = ;
Patch patch( patch_size_, cur_img );
bool converged=false; /* Precomputation step: derivatives in reference patch */
// compute derivative of template and prepare inverse compositional
float __attribute__((__aligned__())) ref_patch_dx[patch.area];
float __attribute__((__aligned__())) ref_patch_dy[patch.area];
Matrix3f H; H.setZero(); // compute gradient and hessian
const int ref_step = patch_size_+; // assumes ref_patch_with_border comes from a specific Mat object with certain size!!! Bad way to do it?
float* it_dx = ref_patch_dx;
float* it_dy = ref_patch_dy;
for(int y=; y<patch_size_; ++y)
{
uint8_t* it = ref_patch_with_border + (y+)*ref_step + ;
for(int x=; x<patch_size_; ++x, ++it, ++it_dx, ++it_dy)
{
Vector3f J;
J[] = 0.5 * (it[] - it[-]);
J[] = 0.5 * (it[ref_step] - it[-ref_step]);
J[] = ;
*it_dx = J[];
*it_dy = J[];
H += J*J.transpose();
}
}
Matrix3f Hinv = H.inverse();
float mean_diff = ; /* Iterative loop: residues and updates with patch in current image */
// Compute pixel location in new image:
float u = cur_px_estimate.x();
float v = cur_px_estimate.y(); // termination condition
const float min_update_squared = 0.03*0.03;
const int cur_step = cur_img.step.p[];
// float chi2 = 0;
Vector3f update; update.setZero();
for(int iter = ; iter<n_iter; ++iter)
{
// TODO very rarely this can happen, maybe H is singular? should not be at corner.. check
// if(isnan(cur_px_estimate[0]) || isnan(cur_px_estimate[1]))
// return false; // set patch position for current feature location
patch.setPosition( cur_px_estimate );
// abort the optimization if the patch does not fully lie within the image
if(!patch.isInFrame(patch.halfsize))
break;
// compute interpolation weights
patch.computeInterpWeights(); // set ROI in the current image to traverse
patch.setRoi();
// loop through search_patch, interpolate
uint8_t* it_ref = ref_patch;
float* it_ref_dx = ref_patch_dx;
float* it_ref_dy = ref_patch_dy;
uint8_t* ptr; // pointer that will point to memory locations of the ROI (same memory as for the original full cur_img)
// float new_chi2 = 0.0;
Vector3f Jres; Jres.setZero();
for(int y=; y<patch.size; ++y)
{
// get the pointer to first element in row y of the patch ROI
ptr = patch.roi.ptr(y);
for(int x=; x<patch.size; ++x, ++ptr, ++it_ref, ++it_ref_dx, ++it_ref_dy)
{
float search_pixel = patch.wTL*ptr[] + patch.wTR*ptr[] + patch.wBL*ptr[cur_step] + patch.wBR*ptr[cur_step+];
float res = search_pixel - *it_ref + mean_diff;
Jres[] -= res*(*it_ref_dx);
Jres[] -= res*(*it_ref_dy);
Jres[] -= res;
// new_chi2 += res*res;
}
} /*
if(iter > 0 && new_chi2 > chi2)
{
#if SUBPIX_VERBOSE
cout << "error increased." << endl;
#endif
u -= update[0];
v -= update[1];
break;
}
chi2 = new_chi2;
*/
update = Hinv * Jres;
u += update[];
v += update[];
cur_px_estimate = Vector2d(u,v);
mean_diff += update[]; #if SUBPIX_VERBOSE
cout << "Iter " << iter << ":"
<< "\t u=" << u << ", v=" << v
<< "\t update = " << update[] << ", " << update[]
// << "\t new chi2 = " << new_chi2 << endl;
#endif if(update[]*update[]+update[]*update[] < min_update_squared)
{
#if SUBPIX_VERBOSE
cout << "converged." << endl;
#endif
converged=true;
break;
}
} cur_px_estimate << u, v;
return converged;
}
//为当前创建新的点特征,并在此图像中使用精确(对齐)的位置坐标
PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
frame->addFeature(new_feature);
在这里,我们将特征中的引用添加到3D点,只有在选择此帧作为关键帧时才进行另一种方式。
if(pt_ftr != NULL)
{
if(pt_ftr->type == PointFeat::EDGELET)
{
new_feature->type = PointFeat::EDGELET;
new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
new_feature->grad.normalize();
}
}
尝试优化每个细分线段坐标
即使我们提前破坏,细胞的随机访问顺序也能确保特征的均匀分布(maxFts即将到达)
for(size_t i=; i<gridls_.cells.size(); ++i)
{
if(refineBestCandidate(*gridls_.cells.at(gridls_.cell_order[i]), frame))
++n_ls_matches_;
if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
break; // the random visit order of cells assures uniform distribution
// of the features even if we break early (maxFts reached soon)
}
/*for(auto it = lines_.begin(), ite = lines_.end(); it!=ite; ++it)
{
if(refine(it->ls,it->spx,it->epx,frame))
++n_ls_matches_;
if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
break;
}*/
SVO_STOP_TIMER("feature_align");
特征细化结束
PL-SVO公式推导及代码解析:地图点重投影和特征对齐的更多相关文章
- PL-SVO公式推导及代码解析:位姿优化
通过跳过极线约束单独优化图像中每个特征的位置后,必须通过最小化3D特征与图像中相应的2D特征位置之间的重投影误差来进一步细化(3)中获得的相机姿态( 见图5).为此,我们考虑在世界坐标系中3D特征和相 ...
- loam详细代码解析与公式推导
loam详细代码解析与公式推导(基础理论知识) 一.基础坐标变换 loam中欧拉角解算都采用R P Y 的解算方式,即先左乘R, 再左乘P, 最后左乘Y,用矩阵表示为: R = Ry * Rp * R ...
- 机器学习(公式推导与代码实现)--sklearn机器学习库
一.scikit-learn概述 1.sklearn模型 sklearn全称是scikit-learn,它是一个基于Python的机器学习类库,主要建立在NumPy.Pandas.SciPy和Ma ...
- VBA常用代码解析
031 删除工作表中的空行 如果需要删除工作表中所有的空行,可以使用下面的代码. Sub DelBlankRow() DimrRow As Long DimLRow As Long Dimi As L ...
- [nRF51822] 12、基础实验代码解析大全 · 实验19 - PWM
一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指 ...
- [nRF51822] 11、基础实验代码解析大全 · 实验16 - 内部FLASH读写
一.实验内容: 通过串口发送单个字符到NRF51822,NRF51822 接收到字符后将其写入到FLASH 的最后一页,之后将其读出并通过串口打印出数据. 二.nRF51822芯片内部flash知识 ...
- [nRF51822] 10、基础实验代码解析大全 · 实验15 - RTC
一.实验内容: 配置NRF51822 的RTC0 的TICK 频率为8Hz,COMPARE0 匹配事件触发周期为3 秒,并使能了TICK 和COMPARE0 中断. TICK 中断中驱动指示灯D1 翻 ...
- [nRF51822] 9、基础实验代码解析大全 · 实验12 - ADC
一.本实验ADC 配置 分辨率:10 位. 输入通道:5,即使用输入通道AIN5 检测电位器的电压. ADC 基准电压:1.2V. 二.NRF51822 ADC 管脚分布 NRF51822 的ADC ...
- java集合框架之java HashMap代码解析
java集合框架之java HashMap代码解析 文章Java集合框架综述后,具体集合类的代码,首先以既熟悉又陌生的HashMap开始. 源自http://www.codeceo.com/arti ...
随机推荐
- luogu P5294 [HNOI2019]序列
传送门 这个什么鬼证明直接看uoj的题解吧根本不会证明 首先方案一定是若干段等值的\(B\),然后对于一段,\(B\)的值应该是\(A\)的平均值.这个最优方案是可以线性构造的,也就是维护以区间平均值 ...
- 401 experience
AM: 块元素与内联元素 : div与span的区别 span只能设置水平的margin(左右内外边距) 在span里面加 display:block; 内联转块(相当于给span加了上下的边距)反 ...
- codeblocks修改字体颜色-背景颜色
常用: 1. 编辑器背景-豆沙绿配置:色调85,饱和度123,亮度205: 2. 注释颜色-紫色:rgb(255,0,255): 参考: 改变codeblocks里面各种注释的颜色 常用颜色的RGB值 ...
- java 面经
1.什么是Java虚拟机(JVM)?为什么Java被称作是“平台无关的编程语言”? Java虚拟机是一个可以执行Java字节码的虚拟机进程.Java源文件被编译成能被Java虚拟机执行的字节码文件. ...
- PHP 【三】
字符串变量 $txt = "Hello world!"; 创建字符串后,就可以对它操作,可以在函数中使用,或者把它存储在变量中 并置运算符 [把两个字符串值连接起来] <?p ...
- C语言网 蓝桥杯 1117K-进制数
这是一道较难的题目,我刚开始用排列组合的方式来做,并没有做出来,故运用了的深搜算法. 深搜算法的概念: 选其中一条路,遍历完成后,逐步返回直至全部遍历,最后返回起点. 解题思路 : 题目中对零的个数没 ...
- Redis学习之二 数据类型和相关命令
原文:https://www.cnblogs.com/lonelyxmas/p/9073928.html 如果还不懂安装的,请看 Windows环境下安装Redis Redis一共支持五种数据类型 1 ...
- [51nod1965]奇怪的式子
noteskey 怎么说,魔性的题目...拿来练手 min_25 正好...吧 首先就是把式子拆开来算贡献嘛 \[ANS=\prod_{i=1}^n \sigma_0(i)^{\mu(i)} \pro ...
- flex使内部内容自适应宽度
- 传输层的端口与TCP标志中的URG和PSH位
一.协议端口号的提出 运输层提供了进程间通信的能力(即端-端通信).但是不同的操作系统可能无法识别其他机器上的进程.为了用统一的方法对 TCP/IP体系的应用进程进行标志,使运行不同操作系统的计算机的 ...