PL-SVO公式推导及代码解析:地图点重投影和特征对齐
对当前帧进行地图点重投影和特征对齐
- // map reprojection & feature alignment
- SVO_START_TIMER("reproject");
- reprojector_.reprojectMap(new_frame_, overlap_kfs_);
- SVO_STOP_TIMER("reproject");
在processframe函数中在进行初始的稀疏图像对齐之后,进一步进行地图投影和特征对齐,对新一帧图像添加特征点,由reprojectMap接口进入
- Reprojector reprojector_; //把其它关键帧中的点投影到当前帧中
- FramePtr new_frame_; // 当前帧
- vector< pair<FramePtr,size_t> > overlap_kfs_; // 具有重叠视野的所有关键帧。 配对数字指明观察到的公共地图点数。
- void Reprojector::reprojectMap(
- FramePtr frame,
- std::vector< std::pair<FramePtr,std::size_t> >& overlap_kfs)
- {
- resetReprojGrid();
- resetReprojGrid(); // 重置函数
- // Identify those Keyframes which share a common field of view.
- SVO_START_TIMER("reproject_kfs");
- list< pair<FramePtr,double> > close_kfs;
- map_.getCloseKeyframes(frame, close_kfs);
void Map::getCloseKeyframes(
const FramePtr& frame,
std::list< std::pair<FramePtr,double> >& close_kfs);
const FramePtr& frame; //当前图像帧
std::list< std::pair<FramePtr,double> >& close_kfs ;///存储和当前帧接近的关键帧指针以及它们之间的距离。
- 根据它们的接近程度对KF进行重叠排序(列表中的第二个值)
- close_kfs.sort(boost::bind(&std::pair<FramePtr, double>::second, _1) <
- boost::bind(&std::pair<FramePtr, double>::second, _2));
重新投影具有重叠的最近N kfs的所有地图特征。
- size_t n_kfs = ;
- overlap_kfs.reserve(options_.max_n_kfs);
- for(auto it_frame=close_kfs.begin(), ite_frame=close_kfs.end();
- it_frame!=ite_frame && n_kfs<options_.max_n_kfs; ++it_frame, ++n_kfs)
- {
- FramePtr ref_frame = it_frame->first;
- // add the current frame to the (output) list of keyframes with overlap
- // initialize the counter of candidates from this frame (2nd element in pair) to zero
- overlap_kfs.push_back(pair<FramePtr,size_t>(ref_frame,));
- // Consider for candidate each mappoint in the ref KF that the current (input) KF observes
- // We only store in which grid cell the points fall.
- // Add each corresponding valid new Candidate to its cell in the grid.
- int num_pt_success = setKfCandidates( frame, ref_frame->pt_fts_ );
- overlap_kfs.back().second += num_pt_success;
- // Add each line segment in the ref KF that the current (input) KF observes
- int num_seg_success = setKfCandidates( frame, ref_frame->seg_fts_ );
- overlap_kfs.back().second += num_seg_success;
- }
- SVO_STOP_TIMER("reproject_kfs");
- 考虑当前(输入)KF观察到的参考KF中的每个mappoint的候选者
我们只存储点落在哪个网格单元格中。
将每个对应的有效新Candidate添加到网格中的单元格中。
- template<class FeatureT>
- int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)
- {
- int candidate_counter = ;
- for(auto it=fts.begin(), ite_ftr=fts.end(); it!=ite_ftr; ++it)
- {
- // check if the feature has a 3D object assigned
- if((*it)->feat3D == NULL)
- continue;
- // make sure we project a point only once
- if((*it)->feat3D->last_projected_kf_id_ == frame->id_)
- continue;
- (*it)->feat3D->last_projected_kf_id_ = frame->id_;
- if(reproject(frame, (*it)->feat3D))
- // increment the number of candidates taken successfully
- candidate_counter++;
- }
- return candidate_counter;
- }
int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)
把地图点和投影到当前帧中的像素点的匹配对存储到 grid_.cells 中
- bool Reprojector::reproject(FramePtr frame, Point* point)
- {
- // get position in current frame image of the world 3D point
- Vector2d cur_px(frame->w2c(point->pos_));
- if(frame->cam_->isInFrame(cur_px.cast<int>(), )) // 8px is the patch size in the matcher
- {
- // get linear index (wrt row-wise vectorized grid matrix)
- // of the image grid cell in which the point px lies
- const int k = static_cast<int>(cur_px[]/grid_.cell_size)*grid_.grid_n_cols
- + static_cast<int>(cur_px[]/grid_.cell_size);
- grid_.cells.at(k)->push_back(PointCandidate(point, cur_px));
- return true;
- }
- return false;
- }
数据类型的定义
- struct PointCandidate {
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- Point* pt; //!< 3D point.
- Vector2d px; //!< projected 2D pixel location.
- PointCandidate(Point* pt, Vector2d& px) : pt(pt), px(px) {}
- };
- // A cell is just a list of Reprojector::Candidate
- typedef std::list<PointCandidate, aligned_allocator<PointCandidate> > Cell;
- typedef std::vector<Cell*> CandidateGrid;
- struct LineCandidate {
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- LineSeg* ls; //!< 3D point.
- Vector2d spx;
- Vector2d epx;
- LineCandidate(LineSeg* ls, Vector2d& spx, Vector2d& epx) : ls(ls), spx(spx), epx(epx) {}
- };
- /// The candidate segments are collected in a single list for the whole image.
- /// There is no clear heuristic about how to discretize the image space for the segment case.
- typedef std::list<LineCandidate, aligned_allocator<LineCandidate> > LineCandidates;
- typedef std::vector<LineCandidates*> LineCandidateGrid;
- /// The grid stores a set of candidate matches. For every grid cell we try to find one match.
- struct Grid
- {
- CandidateGrid cells;
- vector<int> cell_order;
- int cell_size;
- int grid_n_cols;
- int grid_n_rows;
- };
- struct GridLs
- {
- LineCandidateGrid cells;
- vector<int> cell_order;
- int cell_size;
- int grid_n_cols;
- int grid_n_rows;
- };
- Grid grid_;
- GridLs gridls_;
- Matcher matcher_;
- Map& map_;
现在投影所有地图坐标
点坐标
- // Now project all map candidates
- // (candidates in the map are created from converged seeds)
- SVO_START_TIMER("reproject_candidates");
- // Point candidates
- // (same logic as above to populate the cell grid but taking candidate points from the map object)
- setMapCandidates(frame, map_.point_candidates_);
线坐标
- // Segment candidates
- setMapCandidates(frame, map_.segment_candidates_);
- SVO_STOP_TIMER("reproject_candidates");
Map& map_; //地图类
MapPointCandidates point_candidates_; // 收敛的3D点的容器,尚未分配给两个关键帧。
MapSegmentCandidates segment_candidates_; /////尚未分配给两个关键帧的融合3D点的容器。
- class MapPointCandidates
- {
- public:
- typedef pair<Point*, PointFeat*> PointCandidate;
- typedef list<PointCandidate> PointCandidateList;
- /// The depth-filter is running in a parallel thread and fills the canidate list.
- /// This mutex controls concurrent access to point_candidates.
- boost::mutex mut_;
- /// Candidate points are created from converged seeds.
- /// Until the next keyframe, these points can be used for reprojection and pose optimization.
- PointCandidateList candidates_;
- list< Point* > trash_points_;
- MapPointCandidates();
- ~MapPointCandidates();
- /// Add a candidate point.
- void newCandidatePoint(Point* point, double depth_sigma2);
- /// Adds the feature to the frame and deletes candidate from list.
- void addCandidatePointToFrame(FramePtr frame);
- /// Remove a candidate point from the list of candidates.
- bool deleteCandidatePoint(Point* point);
- /// Remove all candidates that belong to a frame.
- void removeFrameCandidates(FramePtr frame);
- /// Reset the candidate list, remove and delete all points.
- void reset();
- void deleteCandidate(PointCandidate& c);
- void emptyTrash();
- };
- void MapPointCandidates::deleteCandidate(PointCandidate& c)
- {
- // camera-rig: another frame might still be pointing to the candidate point
- // therefore, we can't delete it right now.
- delete c.second; c.second=NULL;
- c.first->type_ = Point::TYPE_DELETED;
- trash_points_.push_back(c.first);
- }
- template<class MapCandidatesT>
- void Reprojector::setMapCandidates(FramePtr frame, MapCandidatesT &map_candidates)
- {
- boost::unique_lock<boost::mutex> lock(map_candidates.mut_); // the mutex will be unlocked when out of scope
- auto it=map_candidates.candidates_.begin();
- while(it!=map_candidates.candidates_.end())
- {
- if(!reproject(frame, it->first))
- {
- // if the reprojection of the map candidate point failed,
- // increment the counter of failed reprojections (assess the point quality)
- it->first->n_failed_reproj_ += ;
- if(it->first->n_failed_reproj_ > )
- {
- // if the reprojection failed too many times, remove the map candidate point
- map_candidates.deleteCandidate(*it);
- it = map_candidates.candidates_.erase(it);
- continue;
- }
- }
- ++it;
- } // end-while-loop
- }
现在我们浏览每个网格单元并选择一个匹配点。最后,我们每个细胞最多应该有一个重新投射点。
- SVO_START_TIMER("feature_align");
- for(size_t i=; i<grid_.cells.size(); ++i)
- {
- // we prefer good quality points over unkown quality (more likely to match)
- // and unknown quality over candidates (position not optimized)
- // we use the random cell order to visit cells uniformly on the grid
- if(refineBestCandidate(*grid_.cells.at(grid_.cell_order[i]), frame))
- ++n_matches_;
- if(n_matches_ > (size_t) Config::maxFts())
- break; // the random visit order of cells assures uniform distribution
- // of the features even if we break early (maxFts reached soon)
- }
我们更喜欢质量好的点而不是未知质量(更可能匹配)和未知质量而不是候选者(位置未优化)
我们使用随机单元格顺序在网格上统一访问单元格
- bool Reprojector::refineBestCandidate(Cell& cell, FramePtr frame)
- {
- // sort the candidates inside the cell according to their quality
- cell.sort(boost::bind(&Reprojector::pointQualityComparator, _1, _2));
- Cell::iterator it=cell.begin();
- // in principle, iterate through the whole list of features in the cell
- // in reality, there is maximum one point per cell, so the loop returns if successful
- while(it!=cell.end())
- {
- ++n_trials_;
- // Try to refine the point feature in frame from current initial estimate
- bool success = refine( it->pt, it->px, frame );
- // Failed or not, this candidate was finally being erased in original code
- it = cell.erase(it); // it takes next position in the list as output of .erase
- if(success)
- // Maximum one point per cell.
- return true;
- }
- return false;
- }
尝试从当前初始估计中细化帧中的点要素
- bool Reprojector::refine(Point* pt, Vector2d& px_est, FramePtr frame)
- {
- if(pt->type_ == Point::TYPE_DELETED)
- return false;
- bool found_match = true;
- if(options_.find_match_direct)
- // refine px position in the candidate by directly applying subpix refinement
- // internally, it is optimizing photometric error
- // of the candidate px patch wrt the closest-view reference feature patch
- found_match = matcher_.findMatchDirect(*pt, *frame, px_est);
- // TODO: What happens if options_.find_match_direct is false??? Shouldn't findEpipolarMatchDirect be here?
- // apply quality logic
- {
- if(!found_match)
- {
- // if there is no match found for this point, decrease quality
- pt->n_failed_reproj_++;
- // consider removing the point from map depending on point type and quality
- if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_failed_reproj_ > )
- map_.safeDeletePoint(pt);
- if(pt->type_ == Point::TYPE_CANDIDATE && pt->n_failed_reproj_ > )
- map_.point_candidates_.deleteCandidatePoint(pt);
- return false;
- }
- // if there is successful match found for this point, increase quality
- pt->n_succeeded_reproj_++;
- if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_succeeded_reproj_ > )
- pt->type_ = Point::TYPE_GOOD;
- }
- // create new point feature for this frame with the refined (aligned) candidate position in this image
- PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
- frame->addFeature(new_feature);
- // Here we add a reference in the feature to the 3D point, the other way
- // round is only done if this frame is selected as keyframe.
- // TODO: why not give it directly to the constructor PointFeat(frame.get(), pt, it->px, matcher_.serach_level_)
- new_feature->feat3D = pt;
- PointFeat* pt_ftr = static_cast<PointFeat*>( matcher_.ref_ftr_ );
- if(pt_ftr != NULL)
- {
- if(pt_ftr->type == PointFeat::EDGELET)
- {
- new_feature->type = PointFeat::EDGELET;
- new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
- new_feature->grad.normalize();
- }
- }
- // If the keyframe is selected and we reproject the rest, we don't have to
- // check this point anymore.
- // it = cell.erase(it);
- // Maximum one point per cell.
- return true;
- }
通过直接应用子像素细化来细化候选者中的px位置
在内部,它正在优化最近视图参考特征补丁的候选px补丁的光度误差
- bool Matcher::findMatchDirect(
- const Point& pt,
- const Frame& cur_frame,
- Vector2d& px_cur)
- {
- // get reference feature in closest view (frame)
- if(!pt.getCloseViewObs(cur_frame.pos(), ref_ftr_))
- return false;
- if(!ref_ftr_->frame->cam_->isInFrame(
- ref_ftr_->px.cast<int>()/(<<ref_ftr_->level), halfpatch_size_+, ref_ftr_->level))
- return false;
- // warp affine
- warp::getWarpMatrixAffine(
- *ref_ftr_->frame->cam_, *cur_frame.cam_, ref_ftr_->px, ref_ftr_->f,
- (ref_ftr_->frame->pos() - pt.pos_).norm(),
- cur_frame.T_f_w_ * ref_ftr_->frame->T_f_w_.inverse(), ref_ftr_->level, A_cur_ref_);
- search_level_ = warp::getBestSearchLevel(A_cur_ref_, Config::nPyrLevels()-);
- // is img of ref_frame fully available at any time? that means keeping stored previous images, for how long?
- warp::warpAffine(A_cur_ref_, ref_ftr_->frame->img_pyr_[ref_ftr_->level], ref_ftr_->px,
- ref_ftr_->level, search_level_, halfpatch_size_+, patch_with_border_);
- // patch_with_border_ stores the square patch (of pixel intensities) around the reference feature
- // once the affine transformation is applied to the original reference image
- // the border is necessary for gradient operations (intensities at the border must be precomputed by interpolation too!)
- createPatchFromPatchWithBorder();
- // px_cur should be set
- Vector2d px_scaled(px_cur/(<<search_level_));
- bool success = false;
- PointFeat* pt_ftr = static_cast<PointFeat*>(ref_ftr_);
- if(pt_ftr->type == PointFeat::EDGELET)
- {
- Vector2d dir_cur(A_cur_ref_*pt_ftr->grad);
- dir_cur.normalize();
- success = feature_alignment::align1D(
- cur_frame.img_pyr_[search_level_], dir_cur.cast<float>(),
- patch_with_border_, patch_, options_.align_max_iter, px_scaled, h_inv_);
- }
- else
- {
- success = feature_alignment::align2D(
- cur_frame.img_pyr_[search_level_], patch_with_border_, patch_,
- options_.align_max_iter, px_scaled);
- }
- px_cur = px_scaled * (<<search_level_);
- return success;
- }
特征细化
- bool align2D(
- const cv::Mat& cur_img,
- uint8_t* ref_patch_with_border,
- uint8_t* ref_patch,
- const int n_iter,
- Vector2d& cur_px_estimate,
- bool no_simd)
- {
- #ifdef __ARM_NEON__
- if(!no_simd)
- return align2D_NEON(cur_img, ref_patch_with_border, ref_patch, n_iter, cur_px_estimate);
- #endif
- const int patch_size_ = ;
- Patch patch( patch_size_, cur_img );
- bool converged=false;
- /* Precomputation step: derivatives in reference patch */
- // compute derivative of template and prepare inverse compositional
- float __attribute__((__aligned__())) ref_patch_dx[patch.area];
- float __attribute__((__aligned__())) ref_patch_dy[patch.area];
- Matrix3f H; H.setZero();
- // compute gradient and hessian
- const int ref_step = patch_size_+; // assumes ref_patch_with_border comes from a specific Mat object with certain size!!! Bad way to do it?
- float* it_dx = ref_patch_dx;
- float* it_dy = ref_patch_dy;
- for(int y=; y<patch_size_; ++y)
- {
- uint8_t* it = ref_patch_with_border + (y+)*ref_step + ;
- for(int x=; x<patch_size_; ++x, ++it, ++it_dx, ++it_dy)
- {
- Vector3f J;
- J[] = 0.5 * (it[] - it[-]);
- J[] = 0.5 * (it[ref_step] - it[-ref_step]);
- J[] = ;
- *it_dx = J[];
- *it_dy = J[];
- H += J*J.transpose();
- }
- }
- Matrix3f Hinv = H.inverse();
- float mean_diff = ;
- /* Iterative loop: residues and updates with patch in current image */
- // Compute pixel location in new image:
- float u = cur_px_estimate.x();
- float v = cur_px_estimate.y();
- // termination condition
- const float min_update_squared = 0.03*0.03;
- const int cur_step = cur_img.step.p[];
- // float chi2 = 0;
- Vector3f update; update.setZero();
- for(int iter = ; iter<n_iter; ++iter)
- {
- // TODO very rarely this can happen, maybe H is singular? should not be at corner.. check
- // if(isnan(cur_px_estimate[0]) || isnan(cur_px_estimate[1]))
- // return false;
- // set patch position for current feature location
- patch.setPosition( cur_px_estimate );
- // abort the optimization if the patch does not fully lie within the image
- if(!patch.isInFrame(patch.halfsize))
- break;
- // compute interpolation weights
- patch.computeInterpWeights();
- // set ROI in the current image to traverse
- patch.setRoi();
- // loop through search_patch, interpolate
- uint8_t* it_ref = ref_patch;
- float* it_ref_dx = ref_patch_dx;
- float* it_ref_dy = ref_patch_dy;
- uint8_t* ptr; // pointer that will point to memory locations of the ROI (same memory as for the original full cur_img)
- // float new_chi2 = 0.0;
- Vector3f Jres; Jres.setZero();
- for(int y=; y<patch.size; ++y)
- {
- // get the pointer to first element in row y of the patch ROI
- ptr = patch.roi.ptr(y);
- for(int x=; x<patch.size; ++x, ++ptr, ++it_ref, ++it_ref_dx, ++it_ref_dy)
- {
- float search_pixel = patch.wTL*ptr[] + patch.wTR*ptr[] + patch.wBL*ptr[cur_step] + patch.wBR*ptr[cur_step+];
- float res = search_pixel - *it_ref + mean_diff;
- Jres[] -= res*(*it_ref_dx);
- Jres[] -= res*(*it_ref_dy);
- Jres[] -= res;
- // new_chi2 += res*res;
- }
- }
- /*
- if(iter > 0 && new_chi2 > chi2)
- {
- #if SUBPIX_VERBOSE
- cout << "error increased." << endl;
- #endif
- u -= update[0];
- v -= update[1];
- break;
- }
- chi2 = new_chi2;
- */
- update = Hinv * Jres;
- u += update[];
- v += update[];
- cur_px_estimate = Vector2d(u,v);
- mean_diff += update[];
- #if SUBPIX_VERBOSE
- cout << "Iter " << iter << ":"
- << "\t u=" << u << ", v=" << v
- << "\t update = " << update[] << ", " << update[]
- // << "\t new chi2 = " << new_chi2 << endl;
- #endif
- if(update[]*update[]+update[]*update[] < min_update_squared)
- {
- #if SUBPIX_VERBOSE
- cout << "converged." << endl;
- #endif
- converged=true;
- break;
- }
- }
- cur_px_estimate << u, v;
- return converged;
- }
//为当前创建新的点特征,并在此图像中使用精确(对齐)的位置坐标
- PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
- frame->addFeature(new_feature);
在这里,我们将特征中的引用添加到3D点,只有在选择此帧作为关键帧时才进行另一种方式。
- if(pt_ftr != NULL)
- {
- if(pt_ftr->type == PointFeat::EDGELET)
- {
- new_feature->type = PointFeat::EDGELET;
- new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
- new_feature->grad.normalize();
- }
- }
尝试优化每个细分线段坐标
即使我们提前破坏,细胞的随机访问顺序也能确保特征的均匀分布(maxFts即将到达)
- for(size_t i=; i<gridls_.cells.size(); ++i)
- {
- if(refineBestCandidate(*gridls_.cells.at(gridls_.cell_order[i]), frame))
- ++n_ls_matches_;
- if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
- break; // the random visit order of cells assures uniform distribution
- // of the features even if we break early (maxFts reached soon)
- }
- /*for(auto it = lines_.begin(), ite = lines_.end(); it!=ite; ++it)
- {
- if(refine(it->ls,it->spx,it->epx,frame))
- ++n_ls_matches_;
- if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
- break;
- }*/
- SVO_STOP_TIMER("feature_align");
特征细化结束
PL-SVO公式推导及代码解析:地图点重投影和特征对齐的更多相关文章
- PL-SVO公式推导及代码解析:位姿优化
通过跳过极线约束单独优化图像中每个特征的位置后,必须通过最小化3D特征与图像中相应的2D特征位置之间的重投影误差来进一步细化(3)中获得的相机姿态( 见图5).为此,我们考虑在世界坐标系中3D特征和相 ...
- loam详细代码解析与公式推导
loam详细代码解析与公式推导(基础理论知识) 一.基础坐标变换 loam中欧拉角解算都采用R P Y 的解算方式,即先左乘R, 再左乘P, 最后左乘Y,用矩阵表示为: R = Ry * Rp * R ...
- 机器学习(公式推导与代码实现)--sklearn机器学习库
一.scikit-learn概述 1.sklearn模型 sklearn全称是scikit-learn,它是一个基于Python的机器学习类库,主要建立在NumPy.Pandas.SciPy和Ma ...
- VBA常用代码解析
031 删除工作表中的空行 如果需要删除工作表中所有的空行,可以使用下面的代码. Sub DelBlankRow() DimrRow As Long DimLRow As Long Dimi As L ...
- [nRF51822] 12、基础实验代码解析大全 · 实验19 - PWM
一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指 ...
- [nRF51822] 11、基础实验代码解析大全 · 实验16 - 内部FLASH读写
一.实验内容: 通过串口发送单个字符到NRF51822,NRF51822 接收到字符后将其写入到FLASH 的最后一页,之后将其读出并通过串口打印出数据. 二.nRF51822芯片内部flash知识 ...
- [nRF51822] 10、基础实验代码解析大全 · 实验15 - RTC
一.实验内容: 配置NRF51822 的RTC0 的TICK 频率为8Hz,COMPARE0 匹配事件触发周期为3 秒,并使能了TICK 和COMPARE0 中断. TICK 中断中驱动指示灯D1 翻 ...
- [nRF51822] 9、基础实验代码解析大全 · 实验12 - ADC
一.本实验ADC 配置 分辨率:10 位. 输入通道:5,即使用输入通道AIN5 检测电位器的电压. ADC 基准电压:1.2V. 二.NRF51822 ADC 管脚分布 NRF51822 的ADC ...
- java集合框架之java HashMap代码解析
java集合框架之java HashMap代码解析 文章Java集合框架综述后,具体集合类的代码,首先以既熟悉又陌生的HashMap开始. 源自http://www.codeceo.com/arti ...
随机推荐
- Django-3-Template模板
模板是html文档+Django逻辑语句的组合. 一.变量和标签 变量通过{{ }}来表示,两个大括号中间是变量名. 标签通过{% %}来表示,就是Python中的函数和方法. 常用标签: {% fo ...
- 主机服务绑定IP
在用 netstat -na 查看当前主机提供的服务,例如显示如下结果: tcp 0 0 127.0.0.1:9000 0.0.0.0:* ...
- 【转】【Linux】Swap与Memory
背景介绍 Memory指机器物理内存,读写速度低于CPU一个量级,但是高于磁盘不止一个量级.所以,程序和数据如果在内存的话,会有非常快的读写速度.但是,内存的造价是要高于磁盘的,且内存的断电丢失数据也 ...
- 【原创】运维基础之Docker(7)关于docker latest tag
Docker images have a tag named latest which doesn’t work as you expect.Latest is just a tag with a s ...
- Ubuntu 18.04LTS 更新镜像配置
清华大学开源镜像站:https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/ Ubuntu 的软件源配置文件是 /etc/apt/sources.list.将 ...
- TensorFlow的Bazel构建文件结构
目录 说明 分析 全局设定文件:$TF_ROOT/WORKSPACE 外部依赖项入口:tensorflow/workspace.bzl 看看有多少package? 本来是想理解一下TF源码编译过程的, ...
- 必须知道的Linux内核常识详解
一.内核功能.内核发行版 1.到底什么是操作系统 (1)linux.windows.android.ucos就是操作系统: (2)操作系统本质上是一个程序,由很多个源文件构成,需要编译连接成操作系统程 ...
- Codeforces 755F PolandBall and Gifts bitset + 二进制优化多重背包
PolandBall and Gifts 转换成置换群后, 对于最大值我们很好处理. 对于最小值, 只跟若干个圈能否刚好组能 k 有关. 最直观的想法就是bitset优化背包, 直接搞肯定T掉. 我们 ...
- java代码获取多边形的中心点
package com.skjd.util; import java.util.ArrayList; import java.util.List; /** * 坐标以及电子围栏相关的工具类 * @au ...
- HttpSession与JSESSIONID的"盗用"
https://blog.csdn.net/qq1437715969/article/details/75331652