recommend centos7

github

Openvino

tooltiks

1. download

openvino addational installation for ncs2

ncs2 get start

browser download https://pan.baidu.com/s/1jN3gP2TDndeguqqGFS78GQ  to ~/obama.mp4

2. install ui

install gnome UI

Report error:

Transaction check error:
file /boot/efi/EFI/centos from install of fwupdate-efi-12-5.el7.centos.x86_64 conflicts with file from package grub2-common-1:2.02-0.65.el7.centos.2.noarch

resolve by  fwupdate-efi conflicts with grub2-common

centOS7下安装GUI图形界面

install rdp

2. Movidius

视频介绍

install in a VM

org doc 

ncsdk 和 openvino 没有关系。

doc1:

cd /opt/intel/computer_vision_sdk/deployment_tools/documentation
python3 -m http.server

doc2:

/opt/intel/computer_vision_sdk/deployment_tools/intel_models
python3 -m http.server 8001

  

 

3. build exmaple

cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples
./build_samples.sh
echo "PATH=\$PATH:$HOME/inference_engine_samples_build/intel64/Release" >> ~/.bashrc
source ~/.bashrc # Build completed, you can find binaries for all samples in the /home/user/inference_engine_samples_build/intel64/Release subfolder.

  

ls /opt/intel/computer_vision_sdk/deployment_tools/intel_models

  

4.  Pre-Trained Models (Open Model Zoo)

echo "MZOOPATH=/opt/intel/computer_vision_sdk/deployment_tools/intel_models" >> ~/.bashrc
source ~/.bashrc

  

5. download new Model

cd /opt/intel/computer_vision_sdk/deployment_tools/model_downloader
echo "PATH=\$PATH:/opt/intel/computer_vision_sdk/deployment_tools/model_downloader" >> ~/.bashrc
echo "PATH=\$PATH:/opt/intel/computer_vision_sdk/deployment_tools/model_optimizer" >> ~/.bashrc
source ~/.bashrc
# python3 downloader.py --name alexnet
downloader.py --name alexnet
cd $HOME/classification/alexnet/caffe/
# python3 mo.py --input_model alexnet.caffemodel
mo.py --input_model alexnet.caffemodel

6. classification   

wget  https://www.petmd.com/sites/default/files/what-does-it-mean-when-cat-wags-tail.jpg -O cat.jpg

classification_sample -i cat.jpg -m alexnet.xml -nt 5

7.  Security Barrier Camera Demo

cd $MZOOPATH

security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-1.png vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png  -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml

security_barrier_camera_demo -i  vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png  -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml

security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-1.png vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png  -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml

security_barrier_camera_demo -i vehicle-license-plate-detection-barrier-0106/description/vehicle-license-plate-detection-barrier-0106.jpeg vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png  -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml

security_barrier_camera_demo -i license-plate-recognition-barrier-0001/description/license-plate-recognition-barrier-0001.png vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png  -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml

8. Object Detection for Faster R-CNN Demo

mkdir -p ~/ObjDetection/faster_rcnn/caffe
cd ~/ObjDetection/faster_rcnn/caffe wget https://raw.githubusercontent.com/rbgirshick/py-faster-rcnn/master/models/pascal_voc/VGG16/faster_rcnn_end2end/test.prototxt # curl -k -O -L https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0 mv faster_rcnn_models.tgz* faster_rcnn_models.tgz
tar -zxvf faster_rcnn_models.tgz
# cd faster_rcnn_models/
mo_caffe.py --input_model faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel --input_proto test.prototxt object_detection_demo -i $MZOOPATH/person-detection-retail-0002/description/person-detection-retail-0002.png -m VGG16_faster_rcnn_final.xml
cd $MZOOPATH
object_detection_demo -i $MZOOPATH/person-detection-retail-0002/description/person-detection-retail-0002.png -m person-detection-retail-0002/FP32/person-detection-retail-0002.xml --bbox_name detector/bbox/ave_pred -d CPU

8. Object Detection SSD Demo, Async API Performance Showcase

object_detection_demo_ssd_async -i <path_to_video>/inputVideo.mp4 -m <path_to_model>/ssd.xml -d GPU

9. Object Detection with SSD-VGG Sample

object_detection_sample_ssd -i $MZOOPATH/person-detection-retail-0013/description/person-detection-retail-0013.png -m $MZOOPATH/person-detection-retail-0013/FP32/person-detection-retail-0013.xml

10. TensorFlow* Object Detection Mask R-CNNs Segmentation Demo

./mask_rcnn_demo -i <path_to_image>/inputImage.bmp -m <path_to_model>/faster_rcnn.xml

  

11. Automatic Speech Recognition Sample

通俗理解生成对抗网络GAN

mkdir -p ~/kaldi/gna/
cd ~/kaldi/gna/
wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/wsj_dnn5b.counts wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/wsj_dnn5b.nnet wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/dev93_scores_10.ark wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/dev93_10.ark mo.py --framework kaldi --input_model wsj*.nnet --counts wsj*.counts --remove_output_softmax speech_sample -d GNA_AUTO -bs 2 -i dev93_10.ark -m wsj_dnn5b.xml -o scores.ark -r dev93_scores_10.ark

  

12. Use of Sample in Kaldi* Speech Recognition Pipeline

普及 Kaldi

Kaldi(A1)语音识别原理

kaldi上第一个免费的中文语音识别例子

...

13. Neural Style Transfer Sample

$ locate  cat.jpg
/home/user/ncappzoo/data/images/cat.jpg
/home/user/ncsdk/examples/data/images/cat.jpg
/opt/movidius/ssd-caffe/examples/images/cat.jpg

./style_transfer_sample -i <path_to_image>/cat.bmp -m <path_to_model>/1_decoder_FP32.xml

14. Hello Infer Request Classification Sample

cd $HOME/classification/alexnet/caffe/
hello_request_classification alexnet.xml /home/user/ncsdk/examples/data/images/cat.jpg CPU

  

15. Interactive Face Detection Demo

16. Image Segmentation Demo

17. Crossroad Camera Demo

cd $MZOOPATH
crossroad_camera_demo -i vdieo.mp4 -m person-vehicle-bike-detection-crossroad-0078/FP32/person-vehicle-bike-detection-crossroad-0078.xml -m_pa person-attributes-recognition-crossroad-0200/FP32/person-attributes-recognition-crossroad-0200.xml -m_reid person-reidentification-retail-0079/FP32/person-reidentification-retail-0079.xml

  

18. Multi-Channel Face Detection Demo

multi-channel-demo -m $MZOOPATH/face-detection-retail-0004/FP32/face-detection-retail-0004.xml \
-l $HOME/inference_engine_samples_build/intel64/Release/lib/libcpu_extension.so \
-nc 1 -duplicate_num 3
  

 

19. Hello Autoresize Classification Sample

cd $HOME/classification/alexnet/caffe/
hello_autoresize_classification alexnet.xml /home/user/ncsdk/examples/data/images/cat.jpg CPU

  

20. Hello Shape Infer Sample

./hello_shape_infer_ssd <path_to_model>/ssd_300.xml <path_to_image>/500x500.bmp CPU 3

21. Human Pose Estimation Demo

human_pose_estimation_demo -i ~/obama.mp4 -m $MZOOPATH/human-pose-estimation-0001/FP32/human-pose-estimation-0001.xml -d CPU

22. Object Detection YOLO* V3 Demo, Async API Performance Showcase

object_detection_demo_yolov3_async -i <path_to_video>/inputVideo.mp4 -m <path_to_model>/yolo_v3.xml -d GPU

23. Pedestrian Tracker Demo

pedestrian_tracker_demo -i ~/obama.mp4 -m_det $MZOOPATH/person-detection-retail-0013/FP32/person-detection-retail-0013.xml -m_reid $MZOOPATH/person-reidentification-retail-0031/FP32/person-reidentification-retail-0031.xml

  

24. Smart Classroom Demo

./smart_classroom_demo -m_act <path to the person/action detection retail model .xml file> -m_fd <path to the face detection retail model .xml file> -m_reid <path to the face reidentification retail model .xml file> -m_lm <path to the landmarks regression retail model .xml file> -fg <path to faces_gallery.json> -i <path to the input video>

25. Super Resolution Demo

./super_resolution_demo -i <path_to_image>/image.bmp -m <path_to_model>/model.xml

26. Using the Validation Application to Check Accuracy on a Dataset

cd ~
git clone -b ssd https://github.com/weiliu89/caffe.git
cd caffe
git branch
cd .. wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar

  

sed -i -e "s/^\(INCLUDE_DIRS := \$(PYTHON_INCLUDE) \/usr\/local\/include\)/\1 \/usr\/incl
ude\/hdf5\/serial\//" Makefile.config sed -i -e "s/hdf5_hl hdf5/hdf5_serial_hl hdf5_serial/" Makefile

  

Hardware-accelerated Function-as-a-Service Using AWS Greengrass* (Beta)

linux install Openvino的更多相关文章

  1. linux install wineQQ

    Linux上没有QQ太麻烦了,查了一下讲wineQQ安装上去了,亲测可以使用滴---就是版本低,安装步骤如下: 一.安装Wine 1.添加PPA sudo add-apt-repository ppa ...

  2. linux install Theano+Tensorflow+Keras

    安装过程中,网络状态一定要好,如果安装过程中出现time out的提示信息,今天就可以洗洗睡啦,等明天网络状态好的时候再安装. 安装过程出现不知名的错误的时候,执行第一步,update一下 1.#up ...

  3. linux install sublime_text3

    ubuntu & debian: (baidu or google) 1). download ***.deb to install inux系统下怎么安装.deb文件? deb 是 ubun ...

  4. Linux install sogou input method

    # Copyright (c) 2016, 付刘伟 (Liuwei Fu)# All rights reserved.# 转载请注明出处 Linux下安装搜狗输入法需要安装以下插件,当以下所有插件安装 ...

  5. linux install tomcat

    折腾了好久,按照官网的安装流程安装了不止3次,发现还是不能成功,最终发现是linux机器本身的问题,因为我用的公司的virtual machine,可能是机器本身在一次迁移的过程当中出现了问题,导致了 ...

  6. 2018 kali linux install tools

    1.VM setup https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html VMware-Wo ...

  7. RHEL / CentOS Linux Install Core Development Tools Automake, Gcc (C/C++), Perl, Python & Debuggers

    how do I install all developer tools such as GNU GCC C/C++ compilers, make and others, after install ...

  8. linux install mysql

    sudo apt-get install mysql-server #此处会输入root的密码,设置的密码要记住 sudo apt-get install mysql-client sudo apt- ...

  9. linux install StarDict

    1. sudo apt-get install stardict 2. Downloads from: http://abloz.com/huzheng/stardict-dic/zh_CN/ 3. ...

随机推荐

  1. 工厂参观记:.NET Core 中 HttpClientFactory 如何解决 HttpClient 臭名昭著的问题

    在 .NET Framework 与 .NET Core 中 HttpClient 有个臭名昭著的问题,HttpClient 实现了 IDispose 接口,但当你 Dispose 它时,它不会立即关 ...

  2. 关于javascript中的变量对象和活动对象

    https://segmentfault.com/a/1190000010339180 https://zhuanlan.zhihu.com/p/26011572 https://www.cnblog ...

  3. js表单反显

    /* * 表单自动回显js * 依赖JQURY * 使用参考:$("#form1").form("load",{"id":"112 ...

  4. 【C++】基于邻接矩阵的图的深度优先遍历(DFS)和广度优先遍历(BFS)

    写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...

  5. [daily]gtk程序不跟随系统的dark主题

    问题描述: 我的系统主题是dark的.在使用mysql-workbench是,里边的一些线条就跟随了系统文字的主要使用了灰白色. 这样在白色画布里就看不见这些线条了. 方法: 设置mysql-work ...

  6. Win10安装和配置JDK

    方法/步骤 1.JDK下载 JDK下载可以在官网下载,如图所示,但由于是国外网站,往往下载速度比较慢,所以推荐在百度软件中心下载.这里要注意自己电脑是32位还是64位,根据具体情况下载相应安装包.   ...

  7. 记录请求的耗时(拦截器、过滤器、aspect)

    文章前言 记录控制器请求的耗时处理通常有三种实现方式,分别是:过滤器.拦截器.aspect:下文将逐一实现. 1.Filter 过滤器 1.1.方法说明 需要实现 Filter 类,主要涉及三个方法: ...

  8. UML用例关系一览

  9. Python文件常用操作方法

    Python文件常用操作方法 一.对File对象常用操作方法: file= open(file, mode='r', buffering=-1, encoding=None, errors=None, ...

  10. Epplus DataTable一次性导出

    public void Export() { string fileName = ""; if (string.IsNullOrEmpty(fileName) == true) { ...