[再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])
设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ 存在, 并求其极限; (2) 计算 $\dps{\vlm{n}\sex{\cfrac{x_{n+1}}{x_n}}^{\frac{1}{x_n^2}}}$; (3) 证明 $\dps{\vlm{n}\sqrt{\cfrac{n}{3}}x_n=1}$.
证明: (1) 由 $0<x_{n+1}=\sin x_n<x_n$ 知 $\sed{x_n}$ 递减有下界, 而 $\dps{\vlm{n}x_n=x_\infty}$ 存在. 于 $x_{n+1}=\sin x_n$ 中令 $n\to\infty$ 有 $$\bex x_\infty=\sin x_\infty\ra x_\infty =0 \eex$$ ($0<x_\infty<\pi\ra \sin x_\infty <x_\infty$). (2) $$\beex \bea \vlm{n}\sex{\cfrac{x_{n+1}}{x_n}}^\frac{1}{x_n^2} &=\exp\sex{\vlm{n}\cfrac{\ln x_{n+1}-\ln x_n}{x_n^2}}\\ &=\exp\sex{\vlm{n}\cfrac{\ln \sin x_n-\ln x_n}{x_n^2}}\\ &=\exp\sex{\lim_{x\to 0^+}\cfrac{\ln \sin x-\ln x}{x^2}}\\ &=\exp\sez{\lim_{x\to 0^+}\cfrac{\cfrac{1}{\xi_x}(\sin x-x)}{x^2}}\quad\sex{\sin x<\xi_x<x}\\ &=\exp\sez{ \lim_{x\to 0^+} \cfrac{-\cfrac{1}{6}x^3+o(x^3)}{x^2\xi_x} }\\ &=e^{-\frac{1}{6}}. \eea \eeex$$ (3) $$\beex \bea \vlm{n}nx_n^2&=\vlm{n}\cfrac{n}{\cfrac{1}{x_n^2}}\\ &=\vlm{n}\cfrac{1}{\cfrac{1}{x_{n+1}^2}-\cfrac{1}{x_n^2}}\\ &=\vlm{n}\cfrac{x_n^2x_{n+1}^2}{x_n^2-x_{n+1}^2}\\ &=\vlm{n}\cfrac{x_n^2\sin^2x_n}{x_n^2-\sin^2x_n}\\ &=\lim_{x\to 0}\cfrac{x^2\sin^2x}{x^2-\sin^2x}\\ &=\lim_{x\to 0}\cfrac{x^4}{(x-\sin x)(x+\sin x)}\\ &=\cfrac{1}{\cfrac{1}{3!}\cdot 2}\\ &=3. \eea \eeex$$
[再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])的更多相关文章
- [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])
设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...
- [再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])
证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$ 证明: 令 $x=\tan t,\ 0< ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
随机推荐
- DB2批量插入性能对比
import ibm_db import random import time first_names = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏' \ '陶姜戚谢邹喻柏水窦章 ...
- 第一节 anaconda+jupyter+numpy简单使用
数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 数据分析三剑客:Numpy,Pandas,Matplotlib 一 Anaconda 1 下载 官网:http ...
- Python爬虫【解析库之pyquery】
该库跟jQuery的使用方法基本一样 http://pyquery.readthedocs.io/ 官方文档 解析库的安装 pip3 install pyquery 初始化 1.字符串初始化 htm ...
- Python开发【第一篇】基础题目一
1.求1-2+3-4+5.....99的所有数的和 n = 1 s = 0 while n<100: temp = n%2 if temp == 0: #偶数 s = s-n else: s = ...
- Visual Studio中Image Watch的使用
Imag watch的简介 Image Watch是一个VS插件,能够让你在调试一个OpenCV程序的时候,看到内存中的图像,这对跟踪bug或者理解一段代码非常有帮助.(原文:Image Watch ...
- Linux内存管理 (16)内存规整
专题:Linux内存管理专题 关键词:内存规整.页面迁移.pageblock.MIGRATE_TYPES. 内存碎片的产生:伙伴系统以页为单位进行管理,经过大量申请释放,造成大量离散且不连续的页面.这 ...
- TensorRT&Sample&Python[introductory_parser_samples]
本文是基于TensorRT 5.0.2基础上,关于其内部的introductory_parser_samples例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
- Golang 入门 : 切片(slice)
切片(slice)是 Golang 中一种比较特殊的数据结构,这种数据结构更便于使用和管理数据集合.切片是围绕动态数组的概念构建的,可以按需自动增长和缩小.切片的动态增长是通过内置函数 append( ...
- Linux命令1
1.获取当前系统支持的所有命令的列表: compgen -c 2.怎样查看一个linux命令的概要与用法: whatis grep #便可查到grep的用法 3.怎样一页一页地查看一个大文件的内 ...
- springboot 学习进度
1 hello world --------------ok 主启动程序必须在层次结构的最上面. 2 配置 3.日志 4.Web开发 1)SpringBoot集成JSP的方法 配置applicatio ...