对faster rcnn 中rpn层的理解
1.介绍
图为faster rcnn的rpn层,接自conv5-3
图为faster rcnn 论文中关于RPN层的结构示意图
2 关于anchor:
一般是在最末层的 feature map 上再用3*3的窗口去卷积特征。当3*3的卷积核滑动到特征图的某一个位置时,以当前滑动窗口中心为中心映射到原图的一个区域(注意 feature map 上的一个点是可以映射到原图的一个区域的,这个很好理解,感受野起的作用啊~...),以原图上这个区域的中心对应一个尺度和长宽比,就是一个anchor了。fast rcnn 使用3种尺度和3种长宽比(1:1;1:2;2:1),则在每一个滑动位置就有 3*3 = 9 个anchor。
3 关于结构 如图1所示:
1、conv5_3->rpn_conv/3*3->rpn_relu对应于文中进行n*n的卷积。这里输出的维数(output)为512,高H和宽W为输入的图像原始大小的1/16。(1,512,H,W)(前面有四个池化层)
2、rpn_relu->rpn_cls_score->rpn_cls_score_reshape->rpn_cls_prob->rpn_cls_prob_reshape
这里是预测每个点的前景和背景概率。rpn_cls_score实际上就是一个1*1的卷积层而已。(相当于是一个全连接层)
如果有A个anchor,每个anchor都有一个前景概率一个背景概率(2*A),输出的大小为(1,2*A,H,W)。
这里的reshape只是为了利用softmax层进行概率的计算而已。(反向传播只是应用于前景)(这里的softmax就是为了看某个anchor更倾向与前景和背景哪一个)
3、rpn_relu->rpn_bbox_pred
这里就是预测每个点的boundingbox。同样的,rpn_bbox_pred也是一个1*1的卷积层而已。输出大小为(1,4*A,H,W) 。
关键在此,这里输出的并不是一个boundingbox的左上右下坐标,而是一个修改量(boundingbox regression)。在r-cnn的supplementary material中,给出了下面几个公式
这里面的
就是的anchor(高、宽、中心),而里面的
是rpn_bbox层输出的四个值,
就是修改之后的高、宽、中心。
4、(rpn_bbox_pred+rpn_cls_prob_reshape)->proposal_layer
这里的proposal_layer就完成了上述修正,并且进行NMS(非极大抑制)以及概率排序等获得最终的boundingbox。这样就完成了在同一个点上获得不同尺度不同比例的包围盒。
输出大小为:(N,4),这里的 N与NMS以及概率排序阈值有关,得到的就是boundingbox的四个坐标。测试时proposal_layer做到了取所有rpn_cls_prob_reshape结果为1的anchor,同时得到他们的修正参数,进行非极大值抑制,输出可能的前景区域。
4 关于FRCNN box回归为什么采用smooth L1 loss
对于边框的预测是一个回归问题。通常可以选择平方损失函数(L2损失)$f(x)=x^2$。但这个损失对于比较大的误差的惩罚很高。我们可以采用稍微缓和一点绝对损失函数(L1损失)$f(x)=|x|$,它是随着误差线性增长,而不是平方增长。
但这个函数在0点处不可导,因此可能会影响收敛。一个通常的解决办法是在0点附近使用平方函数使得它更加平滑。它被称之为平滑L1损失函数。它通过一个参数$\sigma$来控制平滑的区域。
5 为什么要区分前景和背景
RPN网络做的事情就是,把一张图片中,我不感兴趣的区域——花花草草、大马路、天空之类的区域忽视掉,只留下一些我可能感兴趣的区域——车辆、行人、水杯、闹钟等等,然后我之后只需要关注这些感兴趣的区域,进一步确定它到底是车辆、还是行人、还是水杯(分类问题)。。。。
你可能会看到另一对通俗易懂的词语,前景(车、人、杯)和背景(大马路、天空)。
天空和草地都属于背景
天空和马路也都是背景
到此为止,RPN网络的工作就完成了,即我们现在得到的有:在输入RPN网络的feature map上,所有可能包含80类物体的Region区域的信息,其他Region(非常多)我们可以直接不考虑了(不用输入后续网络)。
6 Region Proposal有什么作用?
1、COCO数据集上总共只有80类物体,如果不进行Region Proposal,即网络最后的classification是对所有anchor框定的Region进行识别分类,会严重拖累网络的分类性能,难以收敛。原因在于,存在过多的不包含任何有用的类别(80类之外的,例如各种各样的天空、草地、水泥墙、玻璃反射等等)的Region输入分类网络,而这些无用的Region占了所有Region的很大比例。换句话说,这些Region数量庞大,却并不能为softmax分类器带来有用的性能提升(因为无论怎么预测,其类别都是背景,对于主体的80类没有贡献)。
2、大量无用的Region都需要单独进入分类网络,而分类网络由几层卷积层和最后一层全连接层组成,参数众多,十分耗费计算时间,Faster R-CNN本来就不能做到实时,这下更慢了。
对faster rcnn 中rpn层的理解的更多相关文章
- Faster R-CNN 的 RPN 是啥子?
 Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region p ...
- (原)faster rcnn的tensorflow代码的理解
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/10043864.html 参考网址: 论文:https://arxiv.org/abs/1506.01 ...
- CNN中dropout层的理解
dropout是在训练神经网络模型时,样本数据过少,防止过拟合而采用的trick.那它是怎么做到防止过拟合的呢? 首先,想象我们现在只训练一个特定的网络,当迭代次数增多的时候,可能出现网络对训练集拟合 ...
- 再读faster rcnn,有了深层次的理解
1. https://www.wengbi.com/thread_88754_1.html (图) 2. https://blog.csdn.net/WZZ18191171661/article/de ...
- tensorflow object detection faster r-cnn 中keep_aspect_ratio_resizer是什么意思
如果小伙伴的英语能力强可以直接阅读这里:https://stackoverflow.com/questions/45137835/what-the-impact-of-different-dimens ...
- [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...
- faster rcnn 做识别
faster rcnn 主要分为四个部分: 1. convolutional part: 特征提取 可以使用vgg,resnet 等等 2.region proposal network: 生成 re ...
- Faster RCNN代码理解(Python)
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...
- Faster rcnn代码理解(4)
上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...
随机推荐
- 我是一名IT小小鸟
我是一只it小小鸟 书中介绍了it界大牛们大学期间的学习方法和对未来的职业规划,相比他们,自我感觉相距甚远,对这学科的热情程度也远远比不上他们. 就拿目前数据结构这门高深的课程,应通过更多的课外扩展来 ...
- 《构建之法》第四&十七章读书笔记
<构建之法>第四&十七章读书笔记 一. 前言 再次阅读<构建之法>,愈发被其中生动有趣的举例吸引.作为一本给予软件工程学生的书籍,其不以枯燥的理论知识 ...
- Gradle入门(2):构建简介
基本概念 在Gradle中,有两个基本概念:项目和任务.请看以下详解: 项目是指我们的构建产物(比如Jar包)或实施产物(将应用程序部署到生产环境).一个项目包含一个或多个任务. 任务是指不可分的最小 ...
- Keil C51 的printf
转自:http://blog.csdn.net/zhanglianpin/article/details/44779009 在Keil C51 中使用printf ,首先需要重新实现 putchar( ...
- HTML常用标签及约束
注释 <!--这是一段注释--> 样式表 外部样式(CSS) <head> <link rel="stylesheet" type="tex ...
- 小程序 openid 的原始请求和网络请求
// 登录 wx.login({ success: res => { var code = res.code; //返回code // console.log(code) // 小程序appid ...
- win xp安装
Windows XP with sp3 VOL 微软原版下载: zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74 ...
- 计算机网络【6】—— 从浏览器输入URL到显示页面发生了什么
当在浏览器地址栏输入网址,如:www.baidu.com后浏览器是怎么把最终的页面呈现出来的呢?这个过程可以大致分为两个部分:网络通信和页面渲染. 一.网络通信 互联网内各网络设备间的通信都遵循TCP ...
- centos 7下ldap安装
环境说明: 操作系统:CentOS Linux release 7.5.1804 (Core) LDAP:2.4.44 前提条件: 关闭防火墙.selinux,同时进行时钟同步. 其中XXX需要用域名 ...
- linux下怎么修改grub.cfg
一.grub2的启动配置文件grub.cfggrub2的启动配置文件grub.cfg是/boot/grub/grub.cfg,而不是以前的memu.lst.如果你是多系统,有Ubuntu和window ...