已知数列\(\{x_n\}\)满足\[x_{n+1}=\left(\dfrac 2{n^2}+\dfrac 3n+1\right)x_n+n+1,n\in\mathbf N^*,\]且\(x_1=3\),求数列\(\{x_n\}\)的通项公式.

解答:
根据题意,有\[x_{n+1}=\dfrac{(n+1)(n+2)}{n^2}x_n+n+1,\]于是\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{(n+1)(n+2)},\] 进而可得\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}+\dfrac{1}{n+2}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1},\] 因此\[\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1}=\dfrac{x_{n-1}}{(n-1)^2\cdot n}+\dfrac{1}{n}=\cdots =\dfrac{x_1}{2}+\dfrac 12=2,\]所以\(x_n=n^2(2n+1),n\in\mathbf N^*\).
评:这里除去的这一项\((n+1)^2(n+2)\)是由常数变易法得来的.

MT【129】常数变易法的更多相关文章

  1. MT【316】常数变易法

    已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n( ...

  2. Android 4.4 Kitkat Phone工作流程浅析(七)__来电(MT)响铃流程

    本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象,与Google原生AOSP有些许差异,请读者知悉. ...

  3. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  4. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  5. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  7. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  8. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

  9. 关于电脑玩MT以及多开的方法

    方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...

随机推荐

  1. jmeter—操作数据库

    添加JDBC Request,添加需要执行的sql语句 在这个界面需要配置Variabke Name,内容要与上表中的Name值相同:数据库的用户名.密码.URL.驱动这些基本信息要在这里配置:其他选 ...

  2. python 基础篇01

    一.python介绍年的圣诞节期间,吉多亿个文件的上传和下载千万张照片被分享,全部用倍年,为了打发圣诞节假期,年,第一个Python编译器诞生.它是用C语言实现的,并能够调用C语言的库文件.从一出生, ...

  3. 使用AD对Linux客户端进行身份验证

    https://technet.microsoft.com/zh-cn/library/2008.12.linux.aspx

  4. Linux 定时清理日志脚本

    在远程运行节点创建一个cleanlog.sh 脚本文件 vin clenalog.sh 插入以下内容 #!/bin/env bash start=$(date +%y-%m-%d-%H%M%m) Fi ...

  5. Oracle VM VirtualBox 无法卸载 更新 和修复

    好久没更新Oracle VM VirtualBox 突然发现不能更新了 提示要某个msi文件,回想起来好像是被某个清理垃圾的软件清理掉了. 于是根据提示的版本号网上搜了种子又把安装包下载回来 在命令行 ...

  6. AutoResetEvent 方法名称设计缺陷

    这个类和方法,让人乍一读是读不明白的.不能通过方法名称明白其含义.所以它的方法名称设计是欠考虑. 应该类似于这样: public static class MyAutoResetEvent { pub ...

  7. It isn't possible to write into a document from an asynchronously-loaded

    It isn't possible to write into a document from an asynchronously-loaded   今天遇到了一个问题: 通过document.wri ...

  8. LeetCode 174. Dungeon Game (C++)

    题目: The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dung ...

  9. 接着继续(OO博客第四弹)

    .测试与JSF正确性论证 测试和JSF正确性论证是对一个程序进行检验的两种方式.测试是来的最直接的,输入合法的输入给出正确的提示,输入非法的输入给出错误信息反馈,直接就能很容易的了解程序的运行情况.但 ...

  10. Sprint7

    进展:根据昨天查到的资料,今天开始编写闹钟部分的代码,主要实现了闹钟添加事件显示时间主界面.