【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化
挺好的数位dp……
先说一下我个人的做法:
经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数
f[i]:所有数的所有未包含最后一位的子串的和
s[i]:所有数的所有后缀子串的和
c[i]:所有数的所有后缀子串的个数
n[i]:所有数共有多少个
他们的转移依次是(k为进制数)
f[i]=f[i-1]*k+s[i-1]*k
s[i]=s[i-1]*k*k+c[i-1]*k*(k-1)/2+n[i-1]*k*(k-1)/2
c[i]=c[i-1]*k+n[i-1]*k
n[i]=n[i-1]*k
我们发现对于最高位低于上界的数,我们可以在确定最高位上是1~9之后用上面的转移一遍O(n)dp算出来.如果最高位等于上界的话,我们的转移不太一样,但是也只不过是把某些k改为了这一位的上届,而且如果本位未达到上届,往后转移还是老样子,然而每次都要从前往后走一遍,会T,不过,这很明显是个可以用矩阵乘法优化的dp,因为他的转移方式每次都一样,所以我们就可以加速了,然而这是4*4的矩阵再加上一个log,吃不消啊,但是我们可以预处理转移i(1<=i<=max(n,m))次的矩阵,这样就可以做到O(4^3*n)了,又因为这个矩阵是个上三角矩阵,所以我们加一些矩阵乘法时的优化就可以有有着一个10左右常数的O(n)的做法了,我们解决了这道题!!!
现在说一下别人的做法:
A掉之后,去网上看了看别人的题解,发现从后往前递增并不是不可以,而且根本就没有人从前往后推,更没有任何人的做法跟矩阵乘法有半点关系……
他们就是从后往前递增,推出来一个关于k的次幂的式子,通过预处理k的次幂,加上对于上界的处理来递推……
他们的做法基本上都是O(n)的,但是跑得和我差不多……
#include <cstdio>
#include <cstring>
#include <algorithm>
char xB[(<<)+],*xS,*xT;
#define gtc (xS==xT&&(xT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xT)?0:*xS++)
template <typename _t>
inline void read(_t &x){
register char ch=gtc;bool ud=false;
for(x=;ch<''||ch>'';ch=gtc)if(ch=='-')ud=true;
for(;ch>=''&&ch<='';x=(x<<)+(x<<)+ch-'',ch=gtc);
if(ud)x=-x;
}
typedef long long LL;
const int P=;
const int N=;
int a[][],b[],s[N][][],temp_a[][],temp_b[],c[],d[];
inline void get(int x[][],int y){
memset(temp_a,,sizeof(a));
register int i,j,k;
for(i=;i<;++i)
for(j=;j<;++j)
if(a[i][j])
for(k=;k<;++k)
if(x[j][k])
temp_a[i][k]=(temp_a[i][k]+(LL)x[j][k]*a[i][j])%P;
memcpy(s[y],temp_a,sizeof(s[y]));
}
inline void run(int x[][]){
memset(temp_b,,sizeof(temp_b));
register int i,j;
for(i=;i<;++i)
for(j=;j<;++j)
if(x[i][j])
temp_b[i]=(temp_b[i]+(LL)x[i][j]*d[j])%P;
memcpy(c,temp_b,sizeof(c));
}
int bit,digit[N],k,n,m,len;
inline int calc(){
int ans=,i;
d[]=,d[]=(LL)k*(k-)/%P,d[]=k-,d[]=k-;
for(i=;i<bit;++i)
run(s[i-]),ans=(ans+c[]+c[])%P;
memset(b,,sizeof(b)),b[]=;
for(i=bit;i>;--i){
d[]=((LL)b[]*(digit[i]-(i==bit))%P);
d[]=((LL)b[]*(digit[i]-(i==bit))+d[])%P;
d[]=((LL)k*b[]%P*(digit[i]-(i==bit))+(LL)b[]*((LL)digit[i]*(digit[i]-)/%P)+(LL)b[]*((LL)digit[i]*(digit[i]-)/%P))%P;
d[]=((LL)b[]*(digit[i]-(i==bit))+(LL)b[]*(digit[i]-(i==bit)))%P;
run(s[i-]);
ans=(ans+c[]+c[])%P;
b[]=(b[]+b[])%P;
b[]=((LL)k*b[]+(LL)(b[]+b[])*digit[i])%P;
++b[];
}
return (ans+b[]+b[])%P;
}
int main(){
read(k);int i,j,ans=;
a[][]=k,a[][]=k;
a[][]=(LL)k*k%P,a[][]=((LL)k*(k-)/)%P,a[][]=((LL)k*(k-)/)%P;
a[][]=k,a[][]=k;
a[][]=k;
s[][][]=s[][][]=s[][][]=s[][][]=;
for(read(n),i=n;i>;--i)read(digit[i]);
read(m),len=std::max(n,m);
for(i=;i<=len;++i)get(s[i-],i);
if(n==)ans=(ans-(LL)digit[]*(digit[]-)/%P+P)%P;
else{
for(--digit[],i=;i<=n;++i)
if(digit[i]<)digit[i]+=k,--digit[i+];
else break;
while(digit[n]==)--n;
bit=n,ans=(ans-calc()+P)%P;
}
for(i=m;i>;--i)read(digit[i]);
if(m==)ans=(ans+(LL)digit[]*(digit[]+)/%P)%P;
else bit=m,ans=(ans+calc())%P;
printf("%d\n",ans);
return ;
}
【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化的更多相关文章
- 【bzoj3329】Xorequ 数位dp+矩阵乘法
题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...
- 洛谷2151[SDOI2009]HH去散步(dp+矩阵乘法优化)
一道良好的矩阵乘法优化\(dp\)的题. 首先,一个比较\(naive\)的想法. 我们定义\(dp[i][j]\)表示已经走了\(i\)步,当前在点\(j\)的方案数. 由于题目中限制了不能立即走之 ...
- bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)
为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...
- BZOJ 3329: Xorequ [数位DP 矩阵乘法]
3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...
- bzoj 3329: Xorequ【数位dp+矩阵乘法】
注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP
BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺 ...
- BZOJ_1026_[SCOI2009]windy数_数位DP
BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
随机推荐
- Qt-网易云音乐界面实现-2 红红的程序运行图标,和相似下方音乐条
被调出来出差了,这次出差可以说是非常不开心,这次出差也算给我自己提了个醒吧,那就是注意自己的精力,自己的口碑,和比人对自己的信任.具体内容如下 我们公司有一款硬件的设备的电路是外包给某个人来做的,这个 ...
- Appium+python的单元测试框架unittest(1)(转)
unittest为python语言自带的单元测试框架,python把unittest封装为一个标准模块封装在python开发包中.unittest中常用的类有:unittest.TestCase.un ...
- 增强学习训练AI玩游戏
1.游戏简介 符号A为 AI Agent. 符号@为金币,AI Agent需要尽可能的接取. 符号* 为炸弹,AI Agent需要尽可能的躲避. 游戏下方一组数字含义如下: Bomb hit: 代表目 ...
- 【推荐系统】neural_collaborative_filtering(源码解析)
很久没看推荐系统相关的论文了,最近发现一篇2017年的论文,感觉不错. 原始论文 https://arxiv.org/pdf/1708.05031.pdf 网上有翻译了 https://www.cnb ...
- QT中的小细节
一 . QT4和QT5的区别(信号和槽):1. QT4: connect(button,SIGNAL(pressed()),this,SLOT(close())); /** * 优点 :写法简单 ...
- [转] Unicode字符编码区间表
firebug 打UTF8 字符: var res = ""; for(var i=0x80;i< 0xff ;i++){ res += i.toString(16) + & ...
- python循环综合运用
循环很重要,计算机很蠢,唯一的优势就是按照指令不停的执行,所以决定在说一下. break语句,用在循环体中,迫使循环立即终止,即跳出所在循环体,继续执行循环体后面的语句. sum=0 i=1 whil ...
- ubuntu16更新源
http://blog.csdn.net/fengyuzhiren/article/details/54844870
- MySql 赋值操作符"="与":="
MySql小点心—1.赋值操作符"="与":=" 对于刚接触到mysql的程序员来说,会对这两个符号有疑问,因为会发现有的代码里用这个有的用另一个. 当然他们是 ...
- Chapter 5 软件工程中的形式化方法
从广义上讲,形式化方法是指将离散数学的方法用于解决软件工程领域的问题,主要包括建立精确的数学模型以及对模型的分析活动.狭义的讲,形式化方法是运用形式化语言,进行形式化的规格描述.模型推理和验证的方法. ...