luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论
感觉其实很水?
题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算
对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态
那么,有\(n\;mod\;x\)个\(\left \lfloor \frac{n}{x} \right \rfloor + 1\)的堆以及\(x - n\;mod\;x\)个\(\left \lfloor \frac{n}{x} \right \rfloor\)的堆
暴力转移就是\(O(10^{10})\)的
显然上面可以数论分块,再讨论一下奇偶即可
复杂度\(O(10^5 \sqrt 10^5)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
const int sid = 2e5 + 5;
int T, F, tim;
int sg[sid], mex[sid];
inline void init() {
rep(i, F, 100000) {
++ tim;
for(ri ii = 2, jj; ii <= i; ii = jj + 1) {
jj = i / (i / ii);
int p = i / ii, S = i - p * ii, S2 = ii - S, SG = 0;
if(S & 1) SG ^= sg[p + 1];
if(S2 & 1) SG ^= sg[p]; mex[SG] = tim;
if(ii + 1 > jj) continue;
S = i - p * (ii + 1); S2 = (ii + 1) - S; SG = 0;
if(S & 1) SG ^= sg[p + 1];
if(S2 & 1) SG ^= sg[p]; mex[SG] = tim;
}
rep(j, 0, 100000) if(mex[j] != tim)
{ sg[i] = j; break; }
}
}
int main() {
cin >> T >> F;
init();
while(T --) {
int n, x, SG = 0;
cin >> n;
rep(i, 1, n) { cin >> x; SG ^= sg[x]; }
printf("%d ", SG ? 1 : 0);
}
return 0;
}
luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论的更多相关文章
- 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
- [HNOI2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 【LG3235】 [HNOI2014]江南乐
题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...
- bzoj 3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- bzoj 3576: [Hnoi2014]江南乐【博弈论】
这个东西卡常--预处理的时候要先把i%j,i/j都用变量表示,还要把%2变成&1-- 首先每一堆都是不相关子游戏,所以对于每一堆求sg即可 考虑暴力枚举石子数i,分割块数j,分解成子问题求xo ...
随机推荐
- python概念-常用模块之究竟你是什么鬼
模块: 一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 说白了,就是一个python文件中定义好了类和方法,实现了一些功能,可以被别的python文件所调用 ...
- Entity Framework(EF的Model First方法)
EntityFramework,是Microsoft的一款ORM(Object-Relation-Mapping)框架.同其它ORM(如,NHibernate,Hibernate)一样, 一是为了使开 ...
- Count 1 in Binary
Count how many 1 in binary representation of a 32-bit integer. Example Given 32, return 1 Given 5, r ...
- python 之datetime库学习
# -*- coding:utf-8 -*- import refrom datetime import datetime, timezone, timedelta def rec_time(): ...
- [ python ] 学习目录大纲
简易博客[html+css]练习 MySQL 练习题及答案 MySQL视图.触发器.函数.存储过程 MySQL 操作总结 Day41 - 异步IO.协程 Day39/40 - 线程的操作 Day36/ ...
- js事件兼容处理
js封装事件处理函数,兼容ie,支持事件代理 var eventUtil = { bindEvent: function(el, type, target, callback, popgation) ...
- day05作业
一.1.switch 2.字符串 3.表达式1 4.break 5.continue 二.1.B 2.A 3.BD 4.D 5.B 6.B 7.A 8.D 9.D 10.B 三.1.√ 2.√ 3.× ...
- 链家2018春招C/C++开发实习生在线考试编程题
题目一 题解:该题目意思就是让你输入n组数据,然后求并集,利用STL容器set集合的特性:元素不重复存储,我们可以很轻易得出答案 #include <iostream> #include ...
- CSS3实现扇形动画菜单特效
CSS3实现扇形动画菜单特效 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <meta charset=&q ...
- elasticsearch文档学习
1.集群 节点(一个elasticsearch实体) 索引 主节点 :集群级别变更,新增或移除节点,索引: 主节点不参与文档级别搜索和变更. 分片(shard):一个完整的搜索引擎,lucene ...