一、负责数据类型

1、array

现有数据如下:

1 huangbo guangzhou,xianggang,shenzhen a1:30,a2:20,a3:100 beijing,112233,13522334455,500
2 xuzheng xianggang b2:50,b3:40 tianjin,223344,13644556677,600
3 wangbaoqiang beijing,zhejinag c1:200 chongqinjg,334455,15622334455,20

建表语句

use class;
create table cdt(
id int,
name string,
work_location array<string>,
piaofang map<string,bigint>,
address struct<location:string,zipcode:int,phone:string,value:int>)
row format delimited
fields terminated by "\t"
collection items terminated by ","
map keys terminated by ":"
lines terminated by "\n";

导入数据

0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/cdt.txt" into table cdt;

查询语句

select * from cdt;

select name from cdt;

select work_location from cdt;

select work_location[] from cdt;

select work_location[] from cdt;

2、map

建表语句、导入数据同1

查询语句

select piaofang from cdt;

select piaofang["a1"] from cdt;

3、struct

建表语句、导入数据同1

查询语句

select address from cdt;

select address.location from cdt;

4、uniontype

很少使用

参考资料:http://yugouai.iteye.com/blog/1849192

二、视图

1、Hive 的视图和关系型数据库的视图区别

和关系型数据库一样,Hive 也提供了视图的功能,不过请注意,Hive 的视图和关系型数据库的数据还是有很大的区别:

  (1)只有逻辑视图,没有物化视图;

  (2)视图只能查询,不能 Load/Insert/Update/Delete 数据;

  (3)视图在创建时候,只是保存了一份元数据,当查询视图的时候,才开始执行视图对应的 那些子查询

2、Hive视图的创建语句

create view view_cdt as select * from cdt;

3、Hive视图的查看语句

show views;
desc view_cdt;-- 查看某个具体视图的信息

4、Hive视图的使用语句

select * from view_cdt;

5、Hive视图的删除语句

drop view view_cdt;

三、函数

1、内置函数

具体可看http://www.cnblogs.com/qingyunzong/p/8744593.html

(1)查看内置函数

show functions;

(2)显示函数的详细信息

desc function substr;

(3)显示函数的扩展信息

desc function extended substr;

2、自定义函数UDF

当 Hive 提供的内置函数无法满足业务处理需要时,此时就可以考虑使用用户自定义函数。

UDF(user-defined function)作用于单个数据行,产生一个数据行作为输出。(数学函数,字 符串函数)

UDAF(用户定义聚集函数 User- Defined Aggregation Funcation):接收多个输入数据行,并产 生一个输出数据行。(count,max)

UDTF(表格生成函数 User-Defined Table Functions):接收一行输入,输出多行(explode)

(1) 简单UDF示例

A. 导入hive需要的jar包,自定义一个java类继承UDF,重载 evaluate 方法

ToLowerCase.java

import org.apache.hadoop.hive.ql.exec.UDF;

public class ToLowerCase extends UDF{

    // 必须是 public,并且 evaluate 方法可以重载
public String evaluate(String field) {
String result = field.toLowerCase();
return result;
} }

B. 打成 jar 包上传到服务器

C. 将 jar 包添加到 hive 的 classpath

add JAR /home/hadoop/udf.jar;

D. 创建临时函数与开发好的 class 关联起来

0: jdbc:hive2://hadoop3:10000> create temporary function tolowercase as 'com.study.hive.udf.ToLowerCase';

E. 至此,便可以在 hql 在使用自定义的函数

0: jdbc:hive2://hadoop3:10000> select tolowercase('HELLO');

(2) JSON数据解析UDF开发

现有原始 json 数据(rating.json)如下

{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}

{"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"}

{"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"}

{"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"}

{"movie":"2355","rate":"5","timeStamp":"978824291","uid":"1"}

{"movie":"1197","rate":"3","timeStamp":"978302268","uid":"1"}

{"movie":"1287","rate":"5","timeStamp":"978302039","uid":"1"}

{"movie":"2804","rate":"5","timeStamp":"978300719","uid":"1"}

{"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"}

现在需要将数据导入到 hive 仓库中,并且最终要得到这么一个结果:

该怎么做、???(提示:可用内置 get_json_object 或者自定义函数完成)

A. get_json_object(string json_string, string path)

返回值: string

说明:解析json的字符串json_string,返回path指定的内容。如果输入的json字符串无效,那么返回NULL。  这个函数每次只能返回一个数据项。

0: jdbc:hive2://hadoop3:10000> select get_json_object('{"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"}','$.movie');

创建json表并将数据导入进去

0: jdbc:hive2://hadoop3:10000> create table json(data string);
No rows affected (0.983 seconds)
0: jdbc:hive2://hadoop3:10000> load data local inpath '/home/hadoop/json.txt' into table json;
No rows affected (1.046 seconds)
0: jdbc:hive2://hadoop3:10000>

0: jdbc:hive2://hadoop3:10000> select 
. . . . . . . . . . . . . . .> get_json_object(data,'$.movie') as movie
. . . . . . . . . . . . . . .> from json;

B. json_tuple(jsonStr, k1, k2, ...)

参数为一组键k1,k2……和JSON字符串,返回值的元组。该方法比 get_json_object 高效,因为可以在一次调用中输入多个键

0: jdbc:hive2://hadoop3:10000> select 
. . . . . . . . . . . . . . .> b.b_movie,
. . . . . . . . . . . . . . .> b.b_rate,
. . . . . . . . . . . . . . .> b.b_timeStamp,
. . . . . . . . . . . . . . .> b.b_uid
. . . . . . . . . . . . . . .> from json a
. . . . . . . . . . . . . . .> lateral view json_tuple(a.data,'movie','rate','timeStamp','uid') b as b_movie,b_rate,b_timeStamp,b_uid;

(3) Transform实现

Hive 的 TRANSFORM 关键字提供了在 SQL 中调用自写脚本的功能。适合实现 Hive 中没有的 功能又不想写 UDF 的情况

具体以一个实例讲解。

Json 数据: {"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}

需求:把 timestamp 的值转换成日期编号

1、先加载 rating.json 文件到 hive 的一个原始表 rate_json

create table rate_json(line string) row format delimited;
load data local inpath '/home/hadoop/rating.json' into table rate_json;

2、创建 rate 这张表用来存储解析 json 出来的字段:

create table rate(movie int, rate int, unixtime int, userid int) row format delimited fields
terminated by '\t';

解析 json,得到结果之后存入 rate 表:

insert into table rate select
get_json_object(line,'$.movie') as moive,
get_json_object(line,'$.rate') as rate,
get_json_object(line,'$.timeStamp') as unixtime,
get_json_object(line,'$.uid') as userid
from rate_json;

3、使用 transform+python 的方式去转换 unixtime 为 weekday

先编辑一个 python 脚本文件

########python######代码
## vi weekday_mapper.py
#!/bin/python
import sys
import datetime
for line in sys.stdin:
line = line.strip()
movie,rate,unixtime,userid = line.split('\t')
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print '\t'.join([movie, rate, str(weekday),userid])

保存文件 然后,将文件加入 hive 的 classpath:

hive>add file /home/hadoop/weekday_mapper.py;
hive> insert into table lastjsontable select transform(movie,rate,unixtime,userid)
using 'python weekday_mapper.py' as(movie,rate,weekday,userid) from rate;

创建最后的用来存储调用 python 脚本解析出来的数据的表:lastjsontable

create table lastjsontable(movie int, rate int, weekday int, userid int) row format delimited
fields terminated by '\t';

最后查询看数据是否正确

select distinct(weekday) from lastjsontable;

四、特殊分隔符处理

补充:hive 读取数据的机制:

1、 首先用 InputFormat<默认是:org.apache.hadoop.mapred.TextInputFormat >的一个具体实 现类读入文件数据,返回一条一条的记录(可以是行,或者是你逻辑中的“行”)

2、 然后利用 SerDe<默认:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe>的一个具体 实现类,对上面返回的一条一条的记录进行字段切割

Hive 对文件中字段的分隔符默认情况下只支持单字节分隔符,如果数据文件中的分隔符是多 字符的,如下所示:

01||huangbo

02||xuzheng

03||wangbaoqiang

1、使用RegexSerDe正则表达式解析

创建表

create table t_bi_reg(id string,name string)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'
with serdeproperties('input.regex'='(.*)\\|\\|(.*)','output.format.string'='%1$s %2$s')
stored as textfile;

导入数据并查询

0: jdbc:hive2://hadoop3:10000> load data local inpath '/home/hadoop/data.txt' into table t_bi_reg;
No rows affected (0.747 seconds)
0: jdbc:hive2://hadoop3:10000> select a.* from t_bi_reg a;

2、通过自定义InputFormat处理特殊分隔符

Hive学习之路 (十)Hive的高级操作的更多相关文章

  1. [转帖]Hive学习之路 (一)Hive初识

    Hive学习之路 (一)Hive初识 https://www.cnblogs.com/qingyunzong/p/8707885.html 讨论QQ:1586558083 目录 Hive 简介 什么是 ...

  2. Git学习之路(6)- 分支操作

    ▓▓▓▓▓▓ 大致介绍 几乎所有的版本控制系统都会支持分支操作,分支可以让你在不影响开发主线的情况下,随心所欲的实现你的想法,但是在大多数的版本控制系统中,这个过程的效率是非常低的.就比如我在没有学习 ...

  3. Hive学习之路 (二十)Hive 执行过程实例分析

    一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Opera ...

  4. Hive学习之路 (十八)Hive的Shell操作

    一.Hive的命令行 1.Hive支持的一些命令 Command Description quit Use quit or exit to leave the interactive shell. s ...

  5. hive学习笔记之十:用户自定义聚合函数(UDAF)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<hive学习笔记>的第十 ...

  6. Hive学习之路 (一)Hive初识

    Hive 简介 什么是Hive 1.Hive 由 Facebook 实现并开源 2.是基于 Hadoop 的一个数据仓库工具 3.可以将结构化的数据映射为一张数据库表 4.并提供 HQL(Hive S ...

  7. Hive学习之路 (二十一)Hive 优化策略

    一.Hadoop 框架计算特性 1.数据量大不是问题,数据倾斜是个问题 2.jobs 数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 汇总,产生十几个 jobs,耗时很长.原 ...

  8. Hive学习之路 (二)Hive安装

    Hive的下载 下载地址http://mirrors.hust.edu.cn/apache/ 选择合适的Hive版本进行下载,进到stable-2文件夹可以看到稳定的2.x的版本是2.3.3 Hive ...

  9. Hive学习之路 (十一)Hive的5个面试题

    一.求单月访问次数和总访问次数 1.数据说明 数据字段说明 用户名,月份,访问次数 数据格式 A,, A,, B,, A,, B,, A,, A,, A,, B,, B,, A,, A,, B,, B ...

  10. Hive学习之路 (四)Hive的连接3种连接方式

    一.CLI连接 进入到 bin 目录下,直接输入命令: [hadoop@hadoop3 ~]$ hive SLF4J: Class path contains multiple SLF4J bindi ...

随机推荐

  1. R语言与.net 集成开发入门

    首先:R语言的基本教程: https://www.yiibai.com/r/r_environment_setup.html 下载R语言的安装包:https://cran.r-project.org/ ...

  2. div模拟textarea文本域轻松实现高度自适应——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=1362 一.关于tex ...

  3. js-权威指南学习笔记15.2

    1.读取Element的innerHTML属性作为字符串标记返回那个元素的内容. 2.当设置元素的outerHTML时,元素本身被新的内容所替换.只有Element节点定义了outerHTML属性,D ...

  4. bootstrap学习笔记(表单)

    1.基础表单 :对于基础表单,Bootstrap并未对其做太多的定制性效果设计,仅仅对表单内的fieldset.legend.label标签进行了定制. fieldset { min-width: 0 ...

  5. 【c++错误】类的语法错误 error c2533:constructors not allowed a return type(构造函数不允许返回一个类型)

    今天编写类的程序的时候不小心把类后的分号忘写了,就出现上面的错误提示. 顺便复习下类的正确格式: class 类名 { public: //习惯上将公有类型放在前面,便于阅读 ……(外部接口) pro ...

  6. MVP 模式简单易懂的介绍方式

    为什么用Android MVP 设计模式? 当项目越来越庞大.复杂,参与的研发人员越来越多的时候,MVP 模式 的优势就充分显示出来了. MVP 模式是 MVC 模式在 Android 上的一种变体, ...

  7. memcached 的 SockIOPool 概念

    池的概念 SockIOPool 首先来看下属性 SockIOPool属性 boolean initialized = false – 初始化是否完成的标志,只有初始化完成后上层才能正常使用池 int ...

  8. Storm监控文件夹变化 统计文件单词数量

    监控指定文件夹,读取文件(新文件动态读取)里的内容,统计单词的数量. FileSpout.java,监控文件夹,读取新文件内容 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  9. Sql语法高级应用之三:存储过程

    一.存储过程概述 SQL Server中的存储过程是使用T_SQL编写的代码段.它的目的在于能够方便的从系统表中查询信息,或者完成与更新数据库表相关的管理任务和其他的系统管理任务.T_SQL语句是SQ ...

  10. Sql_从查询的结果集中分组后取最后有效的数据成新的结果集小记(待优化)

    Dim sql As String = " SELECT xp.*, " sql = sql + " xf_owner.ownername, " sql = s ...