[Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform
[Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform
题意
给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质不同子串按字典序降序排序后的排名的子串的数量及左右端点.
\(n\le 2\times 10^5\), 保证合法子串个数不超过 \(2\times 10^5\).
题解
我们看这个排名是按字典序逆序排的必有高论. 显然固定左端点后串长越长字典序越大排名越靠前, 而同时子串权值和会增大, 于是对于每个左端点其实最多只有一个满足条件的右端点...(所以那句保证其实是废话)
显然我们对于每个左端点二分这个可能的交点判一下就好了. 子串求和地球人都知道要用前缀和, 问题转化为如何快速求某个子串的排名.
这个后缀自动机好像不是很好搞QAQ...估计要对反串拉出一棵后缀树一看就很难写分明是你懒吧
考虑后缀数组. 我们发现每个后缀对本质不同的子串数量的贡献就是 \(height_{rank_i}\) 与后缀 \(i\) 的长度的差. 如果按后缀排名计算的话, 先算入的子串的字典序显然是要小的. 我们只要二分找到当前子串第一次出现时的左端点然后计算它之前出现的本质不同子串个数就好了.
字典序逆序同理, 前缀和变后缀和.
然后这题就完了. 复杂度两个 \(\log\) (比题解里的一个 \(\log\) 线段树做法快到不知哪里去了). 好像可以算后缀数组求子串排名板子题
参考代码
#include <bits/stdc++.h>
const int MAXN=2e5+10;
typedef long long intEx;
int n;
int a[MAXN];
char s[MAXN];
int SA[MAXN];
int lg[MAXN];
int cnt[MAXN];
int rank[MAXN];
intEx sum[MAXN];
int height[MAXN];
int st[20][MAXN];
int* x=new int[MAXN];
int* y=new int[MAXN];
void BuildSA();
void STBuild();
int STMin(int,int);
intEx Rank(int,int);
int main(){
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;i++){
scanf("%d",a+i);
a[i]+=a[i-1];
}
BuildSA();
STBuild();
std::vector<std::pair<int,int>> ans;
for(int i=1;i<=n;i++){
int l=i,r=n+1;
while(r-l>1){
int mid=(l+r)>>1;
if(Rank(i,mid)>=a[mid]-a[i-1])
l=mid;
else
r=mid;
}
if(Rank(i,l)==a[l]-a[i-1])
ans.emplace_back(i,l);
}
printf("%d\n",int(ans.size()));
for(auto p:ans)
printf("%d %d\n",p.first,p.second);
return 0;
}
intEx Rank(int l,int r){
int L=0,R=rank[l];
while(R-L>1){
int mid=(L+R+1)>>1;
if(mid==rank[l]||STMin(mid+1,rank[l])>=(r-l+1))
R=mid;
else
L=mid;
}
// printf("$ [%d,%d]: first=%d\n",l,r,R);
return sum[R+1]+(n-SA[R]+1)-(r-l+1)+1;
}
void BuildSA(){
int m=127;
for(int i=1;i<=n;i++)
++cnt[x[i]=s[i]];
for(int i=1;i<=m;i++)
cnt[i]+=cnt[i-1];
for(int i=n;i>=1;i--)
SA[cnt[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){
int p=0;
for(int i=n-k+1;i<=n;i++)
y[++p]=i;
for(int i=1;i<=n;i++)
if(SA[i]>k)
y[++p]=SA[i]-k;
memset(cnt+1,0,sizeof(int)*m);
for(int i=1;i<=n;i++)
++cnt[x[i]];
for(int i=1;i<=m;i++)
cnt[i]+=cnt[i-1];
for(int i=n;i>=1;i--)
SA[cnt[x[y[i]]]--]=y[i];
std::swap(x,y);
p=1;
x[SA[1]]=1;
for(int i=2;i<=n;i++)
x[SA[i]]=(y[SA[i]]==y[SA[i-1]]&&y[SA[i]+k]==y[SA[i-1]+k])?p:++p;
if(p>=n)
break;
m=p;
}
int k=0;
for(int i=1;i<=n;i++)
rank[SA[i]]=i;
for(int i=1;i<=n;i++){
if(rank[i]==1)
continue;
if(k)
--k;
int j=SA[rank[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])
++k;
height[rank[i]]=k;
}
for(int i=n;i>=1;i--)
sum[i]=n-SA[i]+1-height[i]+sum[i+1];
// for(int i=1;i<=n;i++){
// printf("SA[%d]=%d sum[%d]=%lld\n",i,SA[i],i,sum[i]);
// }
}
int STMin(int l,int r){
int len=(r-l+1);
return std::min(st[lg[len]][l],st[lg[len]][r-(1<<lg[len])+1]);
}
void STBuild(){
for(int i=2;i<=n;i<<=1)
lg[i]=1;
for(int i=2;i<=n;i++){
lg[i]+=lg[i-1];
st[0][i]=height[i];
}
for(int j=1;(1<<j)<=n;j++){
for(int i=2;i<=n;i++){
st[j][i]=st[j-1][i];
if(i+(1<<(j-1))<=n)
st[j][i]=std::min(st[j][i],st[j-1][i+(1<<(j-1))]);
}
}
}
[Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform的更多相关文章
- [2018HN省队集训D9T1] circle
[2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...
- [2018HN省队集训D8T1] 杀毒软件
[2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...
- [2018HN省队集训D8T3] 水果拼盘
[2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...
- [2018HN省队集训D6T2] girls
[2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...
- [2018HN省队集训D5T2] party
[2018HN省队集训D5T2] party 题意 给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值. 有 \(q\) 个查询, 每次给定一个大小为 ...
- [2018HN省队集训D5T1] 沼泽地marshland
[2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...
- [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard
[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...
- [2018HN省队集训D1T3] Or
[2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...
- [2018HN省队集训D1T1] Tree
[2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...
随机推荐
- 一张图看懂Sprint Planning Meeting
本文主要参考<Scrum精髓>这本书的内容 每个Sprint都是从Sprint Planning Meeting开始,Scrum团队成员聚集在一起商定下个Sprint目标,并且确定在Spr ...
- MVC 基架不支持 Entity Framework 6 或更高版本 即 NuGet的几个小技巧
MVC 基架不支持 Entity Framework 6 或更高版本.有关详细信息,请访问 http://go.microsoft.com/fwlink/?LinkId=276833. 原因:mvc版 ...
- ABP学习入门系列(一)(第一个ABP项目)
ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称.ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应用程序的新起点,它 ...
- sql 数据库数据 批量判断修改
A表B表相关联 更新B表中的VisitWeek字段值 CCD_PartnerVisit 此为B表 Dell_FiscalWeek 此为A表 UPDATE CCD_PartnerVisit SET ...
- [HTML5] Canvas绘制简单形状
使用canvas来进行绘画,它像很多其他dom对象一样,有很多属性和方法,操作这些方法,实现绘画 获取canvas对象,调用document.getElementById()方法 调用canvas对象 ...
- 【转】maven profile实现多环境打包
作为一名程序员,在开发的过程中,经常需要面对不同的运行环境(开发环境.测试环境.生产环境.内网环境.外网环境等等),在不同的环境中,相关的配置一般不一样,比如数据源配置.日志文件配置.以及一些软件运行 ...
- 撩课-Java每天5道面试题第24天
151.springMVC和struts2的区别有哪些? .springmvc的入口是一个servlet即前端控制器(DispatchServlet), 而struts2入口是一个filter过虑器( ...
- POJ 1284 Primitive Roots 数论原根。
Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2479 Accepted: 1385 D ...
- 阿里云服务器linux主机如何添加swap分区
为什么要添加Swap分区?swap分区,即交换区,作用为:当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用.那些被释放的空间可能来自一些很长时间没有什么操作 ...
- 用Struts2实现列表显示和分页功能
引用自http://www.2cto.com/kf/201309/243730.html BlogDAO.java文件 /** 根据条件(默认一张表所有数据)返回多条记录 */ public List ...