Hive系列博文,持续更新~~~

大数据系列之数据仓库Hive原理

大数据系列之数据仓库Hive安装

大数据系列之数据仓库Hive中分区Partition如何使用

大数据系列之数据仓库Hive命令使用及JDBC连接

Hive的工作原理简单来说就是一个查询引擎

先来一张Hive的架构图:

Hive的工作原理如下:

接收到一个sql,后面做的事情包括:
1.词法分析/语法分析
使用antlr将SQL语句解析成抽象语法树-AST
2.语义分析
从Megastore获取模式信息,验证SQL语句中队表名,列名,以及数据类型的检查和隐式转换,以及Hive提供的函数和用户自定义的函数(UDF/UAF)
3.逻辑计划生产
生成逻辑计划-算子树
4.逻辑计划优化
对算子树进行优化,包括列剪枝,分区剪枝,谓词下推等
5.物理计划生成
将逻辑计划生产包含由MapReduce任务组成的DAG的物理计划
6.物理计划执行
将DAG发送到Hadoop集群进行执行
7.将查询结果返回

流程如下图:

Query Compiler

新版本的Hive也支持使用Tez或Spark作为执行引擎。


物理计划可以通过hive的Explain命令输出

例如:

: jdbc:hive2://master:10000/dbmfz> explain select count(*) from record_dimension;
+------------------------------------------------------------------------------------------------------+--+
| Explain |
+------------------------------------------------------------------------------------------------------+--+
| STAGE DEPENDENCIES: |
| Stage- is a root stage |
| Stage- depends on stages: Stage- |
| |
| STAGE PLANS: |
| Stage: Stage- |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| alias: record_dimension |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| Select Operator |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| Group By Operator |
| aggregations: count() |
| mode: hash |
| outputColumnNames: _col0 |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| Reduce Output Operator |
| sort order: |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| value expressions: _col0 (type: bigint) |
| Reduce Operator Tree: |
| Group By Operator |
| aggregations: count(VALUE._col0) |
| mode: mergepartial |
| outputColumnNames: _col0 |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| File Output Operator |
| compressed: false |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| table: |
| input format: org.apache.hadoop.mapred.SequenceFileInputFormat |
| output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe |
| |
| Stage: Stage- |
| Fetch Operator |
| limit: - |
| Processor Tree: |
| ListSink |
| |
+------------------------------------------------------------------------------------------------------+--+
rows selected (0.844 seconds)

除了DML,Hive也提供DDL来创建表的schema。
Hive数据存储支持HDFS的一些文件格式,比如CSV,Sequence File,Avro,RC File,ORC,Parquet。也支持访问HBase。
Hive提供一个CLI工具,类似Oracle的sqlplus,可以交互式执行sql,提供JDBC驱动作为Java的API。

转载请注明出处:

作者:mengfanzhu

原文链接:http://www.cnblogs.com/cnmenglang/p/6684615.html

大数据系列之数据仓库Hive原理的更多相关文章

  1. 大数据系列之数据仓库Hive安装

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  2. 大数据系列之数据仓库Hive命令使用及JDBC连接

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  3. 大数据系列之数据仓库Hive中分区Partition如何使用

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  4. 【大数据系列】apache hive 官方文档翻译

    GettingStarted 开始 Created by Confluence Administrator, last modified by Lefty Leverenz on Jun 15, 20 ...

  5. 大数据系列(3)——Hadoop集群完全分布式坏境搭建

    前言 上一篇我们讲解了Hadoop单节点的安装,并且已经通过VMware安装了一台CentOS 6.8的Linux系统,咱们本篇的目标就是要配置一个真正的完全分布式的Hadoop集群,闲言少叙,进入本 ...

  6. 大数据系列之并行计算引擎Spark介绍

    相关博文:大数据系列之并行计算引擎Spark部署及应用 Spark: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. Spark是UC Berkeley AMP lab ( ...

  7. 大数据系列之分布式计算批处理引擎MapReduce实践

    关于MR的工作原理不做过多叙述,本文将对MapReduce的实例WordCount(单词计数程序)做实践,从而理解MapReduce的工作机制. WordCount: 1.应用场景,在大量文件中存储了 ...

  8. 大数据系列(5)——Hadoop集群MYSQL的安装

    前言 有一段时间没写文章了,最近事情挺多的,现在咱们回归正题,经过前面四篇文章的介绍,已经通过VMware安装了Hadoop的集群环境,相关的两款软件VSFTP和SecureCRT也已经正常安装了. ...

  9. 大数据系列(4)——Hadoop集群VSFTP和SecureCRT安装配置

    前言 经过前三篇文章的介绍,已经通过VMware安装了Hadoop的集群环境,当然,我相信安装的过程肯定遇到或多或少的问题,这些都需要自己解决,解决的过程就是学习的过程,本篇的来介绍几个Hadoop环 ...

随机推荐

  1. (转)enable_from_this方法的使用与陷阱

    转自http://blog.chinaunix.net/uid-442138-id-2122464.html   enable_from_this 的使用与实现原理说明:   shared_from_ ...

  2. BZOJ2437 [Noi2011]兔兔与蛋蛋 【博弈论 + 二分图匹配】

    题目链接 BZOJ2437 题解 和JSOI2014很像 只不过这题动态删点 如果我们把空位置看做\(X\)的话,就会发现我们走的路径是一个\(OX\)交错的路径 然后将图二分染色,当前点必胜,当且仅 ...

  3. 方程式EQGRP_Lost_in_Translation工具之fb.py

    使用方法: 环境搭建:win2003下测试: 下载python2.6并安装 下载pywin32并安装 将C:\Python26添加到环境变量PATH中 将整个windows目录复制到windows20 ...

  4. 《Linux内核设计与实现》第17章读书笔记

    第十七章  设备与模块 一.四种内核成分 设备类型:在所有 Unix 系统中为了统一普通设备的操作所采用的分类. 模块: Linux 内核中用于按需加载和卸载目标码的机制. 内核对象:内核数据结构中支 ...

  5. web项目中classPath指的是哪里?

    classpath可以是SRC下面的路径 但是项目最终编译会到WEB-INF下面,所以有时候WEB-INF下面的classes也可以放配置文件,也可以读取到. 因为最终src都会放到WEB-INF下面 ...

  6. python 异常处理(try...finally...和with...as 方法)

    try...finally... 结构 我们在执行一长串关联命令时,会有一个问题,如果当中一个命令失败了,整个命令串事实上就没有必要执行下去了.在异常发生时,我们也需要执行一些收场工作.比如 clos ...

  7. OpenStack安装部署(二)

    中文文档:http://docs.openstack.org/mitaka/zh_CN/install-guide-rdo/提示:这个中文文档是直接翻译过来的,所以会有很多不通顺的地方. 服务介绍 M ...

  8. Windows 2012 R2 安装net4.6.1

    下载并安装Net4.6.1 根据提示下载如下,并安装 https://support.microsoft.com/zh-cn/help/2919355/windows-rt-8-1--windows- ...

  9. Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别

    简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...

  10. PyQt4 里的表格部件的使用方法: QTableWidget

    PyQt4 里的表格部件的使用方法: QTableWidget QT下QTableWidget使用方法小结 - - 博客频道 - CSDN.NET http://blog.csdn.net/jingz ...