# -*- coding: utf-8 -*-
"""
Created on Mon Apr 22 21:02:02 2019 @author: a
""" # -*- coding: utf-8 -*-
"""
Created on Sat Dec 1 16:53:26 2018 @author: a
"""
import tensorflow as tf
############创建三维矩阵
x = tf.placeholder(tf.int32,shape=[],name="input")
y = tf.placeholder(tf.int32,shape=[],name="input2")
z = tf.placeholder(tf.int32,shape=[],name="input3")
matrix_element_num=x*y*z
batch_sentence_nodes_vectors=tf.zeros(matrix_element_num,tf.float64)
batch_sentence_nodes_vectors=tf.reshape(batch_sentence_nodes_vectors,[x,y,z])
sess = tf.Session()
print (tf.shape(x))
xiaojie=sess.run([x,y,z],feed_dict={x:7,y:8,z:9})
print(xiaojie)
xiaojie2=sess.run(batch_sentence_nodes_vectors,feed_dict={x:7,y:8,z:9})
############创建三维矩阵
############我们目前能够做的就是,指定第一维度的值,然后将一个二维矩阵,必须小于三维矩阵的第二维度和第三维度,替换掉一整个剖面。
#def modify_one_column(tensor,columnTensor,index,numlines,numcolunms):#index也是tensor
def modify_one_profile(tensor,_2DmatrixTensor,index_firstDimension,size_firstDimension,size_secondDimension,size_thirdDimension):
##tensor为三维矩阵
##首先,我们用index_firstDimenion取出整个tensor在第一维度取值index_firstDimenion的剖面,然后分为剖面左侧部分,剖面右侧部分,然后将取出的剖面替换成二维矩阵
_2DmatrixTensor=tf.expand_dims(_2DmatrixTensor,axis=0) #扩展成为三维
new_tensor_left=tf.slice(tensor, [0,0,0], [index_firstDimension,size_secondDimension,size_thirdDimension]) #剖面左侧部分
new_tensor_right=tf.slice(tensor, [index_firstDimension+1,0,0], [size_firstDimension-index_firstDimension-1,size_secondDimension,size_thirdDimension]) #剖面右侧部分
new_tensor=tf.concat([new_tensor_left,_2DmatrixTensor,new_tensor_right],0)
return new_tensor_left,new_tensor_right,new_tensor
#下面测试将一个不够维度的二维矩阵补齐按指定维度补齐
def buqi_2DmatrixTensor(_2DmatrixTensor,lines,columns,targetlines,targetcolumns):
#首先在列上补齐
buqi_column=tf.zeros([lines,targetcolumns-columns],dtype=tf.float64)
_2DmatrixTensor=tf.concat([_2DmatrixTensor,buqi_column],axis=1)
buqi_line=tf.zeros(shape=[targetlines-lines,targetcolumns],dtype=tf.float64)
_2DmatrixTensor=tf.concat([_2DmatrixTensor,buqi_line],axis=0)
return _2DmatrixTensor
#_2DmatrixTensor=tf.ones(y*z,tf.float64)
#_2DmatrixTensor=tf.reshape(_2DmatrixTensor,[y,z])
size_firstDimension=tf.constant(7,tf.int32)
size_secondDimension=tf.constant(8,tf.int32)
size_thirdDimension=tf.constant(9,tf.int32) #_2DmatrixTensor=tf.ones(1*2,tf.float64)
#_2DmatrixTensor=tf.reshape(_2DmatrixTensor,[1,2])
#lines=tf.constant(1,tf.int32)
#columns=tf.constant(2,tf.int32)
#_2DmatrixTensor=buqi_2DmatrixTensor(_2DmatrixTensor,lines,columns,size_secondDimension,size_thirdDimension) #_2DmatrixTensor=tf.ones(8*2,tf.float64)
#_2DmatrixTensor=tf.reshape(_2DmatrixTensor,[8,2])
#lines=tf.constant(8,tf.int32)
#columns=tf.constant(2,tf.int32)
#_2DmatrixTensor=buqi_2DmatrixTensor(_2DmatrixTensor,lines,columns,size_secondDimension,size_thirdDimension) _2DmatrixTensor=tf.ones(1*9,tf.float64)
_2DmatrixTensor=tf.reshape(_2DmatrixTensor,[1,9])
lines=tf.constant(1,tf.int32)
columns=tf.constant(9,tf.int32)
_2DmatrixTensor=buqi_2DmatrixTensor(_2DmatrixTensor,lines,columns,size_secondDimension,size_thirdDimension)
## for index in range(7):
index_tensor=tf.constant(index,tf.int32)
new_tensor_left,new_tensor_right,batch_sentence_nodes_vectors=modify_one_profile(batch_sentence_nodes_vectors,_2DmatrixTensor,index_tensor,size_firstDimension,size_secondDimension,size_thirdDimension)
print (sess.run(batch_sentence_nodes_vectors,feed_dict={x:7,y:8,z:9}))

  

12 tensorflow实战:修改三维tensor矩阵的某个剖面的更多相关文章

  1. TensorFlow 实战(四)—— tensor 的认识

    tensorflow,即是 tensor flows,在 computation graph 中 flows(流动)的不是别人,正是 tensor: 1. tensor 基本属性 tensor 的名字 ...

  2. TensorFlow实战之实现自编码器过程

    关于本文说明,已同步本人另外一个博客地址位于http://blog.csdn.net/qq_37608890,详见http://blog.csdn.net/qq_37608890/article/de ...

  3. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  4. 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)

    学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...

  5. Tensorflow实战(二):Discuz验证码识别

    一.前言 验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人. 本文将使用深 ...

  6. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  7. TensorFlow 实战之实现卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...

  8. [Tensorflow实战Google深度学习框架]笔记4

    本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 ...

  9. 《TensorFlow实战》中AlexNet卷积神经网络的训练中

    TensorFlow实战中AlexNet卷积神经网络的训练 01 出错 TypeError: as_default() missing 1 required positional argument: ...

随机推荐

  1. 【字符串】Reverse Words in a String(两个栈)

    题目: Given an input string, reverse the string word by word. For example,Given s = "the sky is b ...

  2. R语言常用包分类总结

    常用包: ——数据处理:lubridata ,plyr ,reshape2,stringr,formatR,mcmc: ——机器学习:nnet,rpart,tree,party,lars,boost, ...

  3. Math.floor,Math.ceil,Math.rint,Math.round用法

    一.Math.floor函数讲解 floor原意:地板.Math.floor函数是求一个浮点数的地板,就是求一个最接近它的整数,它的值小于或等于这个浮点数.看下面的例子: package com.qi ...

  4. Spark Shell简单使用

    基础 Spark的shell作为一个强大的交互式数据分析工具,提供了一个简单的方式学习API.它可以使用Scala(在Java虚拟机上运行现有的Java库的一个很好方式)或Python.在Spark目 ...

  5. Jsp&Servlet入门级项目全程实录第7讲

    惯例广告一发,对于初学真,真的很有用www.java1234.com,去试试吧! 1.获取搜索条件值 function searchStudent(){ $('#dg').datagrid('load ...

  6. 鼠标样式——css国际组织

    w3c国际标准组织提供的鼠标样式: http://css-cursor.techstream.org/

  7. Enable Scribble,Enable Guard Edges,Enable Guard Malloc,Zombie Objects

    最近项目中使用一个翻拍身份证信息识别活体检测的第三方框架,在使用时会偶然性的出现崩溃的现象,经过查找是因为第三方框架中有释放的内存区域再次引用引起的,因而补充一下相关知识点.   在Xcode Edi ...

  8. Java基础教程(17)--接口

      就像类一样,接口也是引用类型.它可以包含常量,方法签名,默认方法,静态方法和嵌套类型.在接口中,只有默认方法和静态方法有方法体.但不同于类,接口无法实例化,它只能被类实现或被其他接口继承. 一.定 ...

  9. Java泛型类型

    E element 常用于集合中表示存放元素 T type Java类 K key 键 V value 值 N number 数值类型 ? 不确定的类型 一种约定俗成吧

  10. 大话JVM(一):垃圾收集算法

     系列介绍|本系列主要是记录学习jvm过程中觉得重要的内容,方便以后复习 在说垃圾收集算法之前,先要说一下垃圾收集,从大的讲,垃圾收集需要考虑三件事情: 1.哪些内存需要回收 2.什么时候回收 3.如 ...