1 Introduction

A polygon is a closed chain of edges. Several algorithms are available for polygons. For some of those algorithms, it is necessary that the polygon is simple. A polygon is simple if edges don't intersect, except consecutive edges, which intersect in their common vertex.

The following algorithms are available:

  • find the leftmost, rightmost, topmost and bottommost vertex.
  • compute the (signed) area.
  • check if a polygon is simple.
  • check if a polygon is convex.
  • find the orientation (clockwise or counterclockwise)
  • check if a point lies inside a polygon.

All those operations take two forward iterators as parameters in order to describe the polygon. These parameters have a point type as value type.

The type Polygon_2 can be used to represent polygons. Polygons are dynamic. Vertices can be modified, inserted and erased. They provide the algorithms described above as member functions. Moreover, they provide ways of iterating over the vertices and edges.

The Polygon_2 class is a wrapper around a container of points, but little more. Especially, computed values are not cached. That is, when the Polygon_2::is_simple() member function is called twice or more, the result is computed each time anew.

多边形是一个闭合的边的链。多边形有多个算法。对于 其中的一些算法,要求多边形是简单的。多边形是简单的,如果其所有边除相邻边的共同顶点处外都不相交。

下列的算法可用:

  (1)查找最左侧、最右侧、最上方、最下方顶点

  (2)计算()面积

  (3)检查多边形是不是简单的

  (4)检查多边形是不是凸的

  (5)求其方向(顺时针或逆时针)

  (6)检查一个点是否在多边形中

2 Examples

2.1 The Polygon Class

The following example creates a polygon and illustrates the usage of some member functions.

创建一个多边形并使用一些成员函数
File Polygon/Polygon.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <iostream>
 
typedef K::Point_2 Point;
typedef CGAL::Polygon_2<K> Polygon_2;
using std::cout; using std::endl;
 
 
int main()
{
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
Polygon_2 pgn(points, points+4);
 
// check if the polygon is simple.
cout << "The polygon is " <<
(pgn.is_simple() ? "" : "not ") << "simple." << endl;
 
// check if the polygon is convex
cout << "The polygon is " <<
(pgn.is_convex() ? "" : "not ") << "convex." << endl;
 
return 0;
}
Figure 15.1 A polygon and some points

2.2 Algorithms Operating on Sequences of Points

The following example creates a polygon and illustrates the usage of some global functions that operate on sequences of points.

创建一个多边形并使用全局函数来操纵其点的序列
File Polygon/polygon_algorithms.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>
 
typedef K::Point_2 Point;
using std::cout; using std::endl;
 
void check_inside(Point pt, Point *pgn_begin, Point *pgn_end, K traits)
{
cout << "The point " << pt;
switch(CGAL::bounded_side_2(pgn_begin, pgn_end,pt, traits)) {
cout << " is inside the polygon.\n";
break;
cout << " is on the polygon boundary.\n";
break;
cout << " is outside the polygon.\n";
break;
}
}
 
int main()
{
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
 
// check if the polygon is simple.
cout << "The polygon is "
<< (CGAL::is_simple_2(points, points+4, K()) ? "" : "not ")
<< "simple." << endl;
 
check_inside(Point(0.5, 0.5), points, points+4, K());
check_inside(Point(1.5, 2.5), points, points+4, K());
check_inside(Point(2.5, 0), points, points+4, K());
 
return 0;
}

2.3 Polygons in 3D Space

Sometimes it is useful to run a 2D algorithm on 3D data. Polygons may be contours of a 3D object, where the contours are organized in parallel slices, generated by segmentation of image data from a scanner.

In order to avoid an explixit projection on the xy plane, one can use the traits class Projection_traits_xy_3 which is part of the 2D and 3D Linear Geometric Kernel.

有时在3D数据中运行2D算法也是有用的。多边形可能是3D对象的轮廓,它由一个扫描仪通过对图像数据进行分段生成,轮廓以平行的片段组织。
File Polygon/projected_polygon.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>
 
typedef K::Point_3 Point_3;
 
int main()
{
Point_3 points[4] = { Point_3(0,1,1), Point_3(0,2,1), Point_3(0,2,2), Point_3(0,1,2) };
bool b = CGAL::is_simple_2(points,
points+4,
if (!b){
std::cerr << "Error polygon is not simple" << std::endl;
return 1;
}
return 0;
}

2D Polygons( Poygon) CGAL 4.13 -User Manual的更多相关文章

  1. Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...

  2. 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual

    1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...

  3. 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...

  4. 2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction The goal of the circular kernel is to offer to the user a large set of functionalitie ...

  5. Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...

  6. 3D Spherical Geometry Kernel( Geometry Kernels) CGAL 4.13 -User Manual

    Introduction The goal of the 3D spherical kernel is to offer to the user a large set of functionalit ...

  7. dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...

  8. Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...

  9. Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...

随机推荐

  1. Django的models介绍

    我们一般会在创建表的类中写一个__str__方法,就会为为了打印这个对象不会打印一大堆的对象的内存地址,而是我们想要他返回的信息,方便我们更直观的知道这个对象是谁,方便显示.比如下面的例子 from ...

  2. 二级联动的作业&左右移动作业

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 将tomcat做成服务

    ①修改startup.bat 在第一行前加入如下内容: SETJAVA_HOME=D:\ProgramFiles\tool\Java\jdk1.6 SETCATALINA_HOME=D:\Progra ...

  4. 观察者模式 DataObserver

    DatasetObserver是Observer的一个子类 针对于adapter设计的 当调用notifydatasetchanged的时候就会触发回调的方法 adapter.registerObse ...

  5. Sql优化-必劳记!

    0. 尝试在合适的场景下,用 Charindex()函数代替 like,或者全文索引进行 内容搜寻.%like%不走索引,'like%'后百分号可以走索引. 1.调整不良SQL通常可以从以下几点切入: ...

  6. MVC FormCollection 无法获取值的问题

     把action定义为[HttpPost],并且ajax.beginform中ajaxoption中定义为Post,在提交表单时就可以获取FormCollection的值了.httpGet或者后台不定 ...

  7. Java8 改进的匿名内部类:

    1.匿名内部类适合创建那种只需要一次使用的类 2.匿名内部类定义格式: new 实现接口() | 父类构造器(实参列表){ //匿名内部类类体部分 } 3.从上面定义格式可以看出,匿名内部类必须实现一 ...

  8. Codeforces 709B 模拟

    B. Checkpoints time limit per test:1 second memory limit per test:256 megabytes input:standard input ...

  9. Java数据结构和算法(一)概念

    Java数据结构和算法(一)概念 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.逻辑结构 数据之间的相互关系称为逻辑结构 ...

  10. maven 无法下载私服jar包,如刚上传的第三方jar包无法下载。。

    原因可能是: 在你下载该文件时 ,的确 私服上没有该文件. 但是maven会在本地仓库建立文件夹路径,并且今天不会再去私服下载. 即使你现在上传3rd jar ,也不会去下载,导致一直找不到jar.. ...