1 Introduction

A polygon is a closed chain of edges. Several algorithms are available for polygons. For some of those algorithms, it is necessary that the polygon is simple. A polygon is simple if edges don't intersect, except consecutive edges, which intersect in their common vertex.

The following algorithms are available:

  • find the leftmost, rightmost, topmost and bottommost vertex.
  • compute the (signed) area.
  • check if a polygon is simple.
  • check if a polygon is convex.
  • find the orientation (clockwise or counterclockwise)
  • check if a point lies inside a polygon.

All those operations take two forward iterators as parameters in order to describe the polygon. These parameters have a point type as value type.

The type Polygon_2 can be used to represent polygons. Polygons are dynamic. Vertices can be modified, inserted and erased. They provide the algorithms described above as member functions. Moreover, they provide ways of iterating over the vertices and edges.

The Polygon_2 class is a wrapper around a container of points, but little more. Especially, computed values are not cached. That is, when the Polygon_2::is_simple() member function is called twice or more, the result is computed each time anew.

多边形是一个闭合的边的链。多边形有多个算法。对于 其中的一些算法,要求多边形是简单的。多边形是简单的,如果其所有边除相邻边的共同顶点处外都不相交。

下列的算法可用:

  (1)查找最左侧、最右侧、最上方、最下方顶点

  (2)计算()面积

  (3)检查多边形是不是简单的

  (4)检查多边形是不是凸的

  (5)求其方向(顺时针或逆时针)

  (6)检查一个点是否在多边形中

2 Examples

2.1 The Polygon Class

The following example creates a polygon and illustrates the usage of some member functions.

创建一个多边形并使用一些成员函数
File Polygon/Polygon.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <iostream>
 
typedef K::Point_2 Point;
typedef CGAL::Polygon_2<K> Polygon_2;
using std::cout; using std::endl;
 
 
int main()
{
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
Polygon_2 pgn(points, points+4);
 
// check if the polygon is simple.
cout << "The polygon is " <<
(pgn.is_simple() ? "" : "not ") << "simple." << endl;
 
// check if the polygon is convex
cout << "The polygon is " <<
(pgn.is_convex() ? "" : "not ") << "convex." << endl;
 
return 0;
}
Figure 15.1 A polygon and some points

2.2 Algorithms Operating on Sequences of Points

The following example creates a polygon and illustrates the usage of some global functions that operate on sequences of points.

创建一个多边形并使用全局函数来操纵其点的序列
File Polygon/polygon_algorithms.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>
 
typedef K::Point_2 Point;
using std::cout; using std::endl;
 
void check_inside(Point pt, Point *pgn_begin, Point *pgn_end, K traits)
{
cout << "The point " << pt;
switch(CGAL::bounded_side_2(pgn_begin, pgn_end,pt, traits)) {
cout << " is inside the polygon.\n";
break;
cout << " is on the polygon boundary.\n";
break;
cout << " is outside the polygon.\n";
break;
}
}
 
int main()
{
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
 
// check if the polygon is simple.
cout << "The polygon is "
<< (CGAL::is_simple_2(points, points+4, K()) ? "" : "not ")
<< "simple." << endl;
 
check_inside(Point(0.5, 0.5), points, points+4, K());
check_inside(Point(1.5, 2.5), points, points+4, K());
check_inside(Point(2.5, 0), points, points+4, K());
 
return 0;
}

2.3 Polygons in 3D Space

Sometimes it is useful to run a 2D algorithm on 3D data. Polygons may be contours of a 3D object, where the contours are organized in parallel slices, generated by segmentation of image data from a scanner.

In order to avoid an explixit projection on the xy plane, one can use the traits class Projection_traits_xy_3 which is part of the 2D and 3D Linear Geometric Kernel.

有时在3D数据中运行2D算法也是有用的。多边形可能是3D对象的轮廓,它由一个扫描仪通过对图像数据进行分段生成,轮廓以平行的片段组织。
File Polygon/projected_polygon.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>
 
typedef K::Point_3 Point_3;
 
int main()
{
Point_3 points[4] = { Point_3(0,1,1), Point_3(0,2,1), Point_3(0,2,2), Point_3(0,1,2) };
bool b = CGAL::is_simple_2(points,
points+4,
if (!b){
std::cerr << "Error polygon is not simple" << std::endl;
return 1;
}
return 0;
}

2D Polygons( Poygon) CGAL 4.13 -User Manual的更多相关文章

  1. Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...

  2. 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual

    1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...

  3. 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...

  4. 2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction The goal of the circular kernel is to offer to the user a large set of functionalitie ...

  5. Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...

  6. 3D Spherical Geometry Kernel( Geometry Kernels) CGAL 4.13 -User Manual

    Introduction The goal of the 3D spherical kernel is to offer to the user a large set of functionalit ...

  7. dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...

  8. Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...

  9. Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...

随机推荐

  1. Java动态代理机制详解(类加载,JDK 和CGLIB,Javassist,ASM)

    class文件简介及加载 Java编译器编译好Java文件之后,产生.class 文件在磁盘中.这种class文件是二进制文件,内容是只有JVM虚拟机能够识别的机器码.JVM虚拟机读取字节码文件,取出 ...

  2. IIS支持IPA、APK文件的下载

    IIS里MIME类型中默认是没有ipa,apk文件的,所以无法直接通过网络下载.   解决方法如下: 1.打开IIS信息服务管理器,选中自已的网站,在右边面板中找到MIME类型. 2.双击打开,点击右 ...

  3. Castle ActiveRecord学习(三)数据映射及特性描述

    Model中的Demo: using Castle.ActiveRecord; using Castle.ActiveRecord.Queries; using System; using Syste ...

  4. DataTableExtensions

    public static class DataTableExtensions { public static List<dynamic> ToDynamic(this DataTable ...

  5. MetroApp保存UIEment为图片

    写本文的起因是想截取Metro App画面作为图片来使用Win8的共享. 话说自从大MS的客户端UI技术进入XAML时代之后,每次截屏的代码都不太一样,无论silverlight.WPF还是Windo ...

  6. 构造函数constructor 与析构函数destructor(五)

    我们知道当调用默认拷贝构造函数时,一个对象对另一个对象初始化时,这时的赋值时逐成员赋值.这就是浅拷贝,当成员变量有指针时,浅拷贝就会在析构函数那里出现问题.例如下面的例子: //test.h #ifn ...

  7. 判定一个数num是否为x的幂

    那个数所在类型中,x的幂最大值为max 1.则第一条判定:max%num==0: 若x不为任何数的幂,则第一条判定足矣. 若x为某个数的幂,则要加判定条件 2.(num-1)%(x-1)==0 同时满 ...

  8. slice、substring、substr

    slice() 定义和用法 slice() 方法可从已有的数组中返回选定的元素. string.slice(start, end)提取一个字符串 string.substring(start, end ...

  9. 今天研究了一下手机通信录管理系统(C语言)

    题目:手机通信录管理系统 一.题目要求 二.需求分析 三.设计步骤/编写代码 四.上机/运行结果 五.总结 一.题目要求 模拟手机通信录管理系统,实现对手机中的通信录进行管理操作.功能要求: (1)查 ...

  10. 超全table功能Datatables使用的填坑之旅--2:post 动态传参: 解决: ajax 传参无值问题.

    官网解释与方法:1 当向服务器发出一个ajax请求,Datatables将会把服务器请求到的数据构造成一个数据对象. 2 实际上他是参考jQuery的ajax.data属性来的,他能添加额外的参数传给 ...