tf中softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits
其实这两个都是计算交叉熵,只是输入数据不同。
#sparse 稀疏的、稀少的 word_labels = tf.constant([2,0])
predict_logits = tf.constant([[2.0,-1.0,3.0],[1.0,0.0,-0.5]])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels = word_labels,logits = predict_logits)
with tf.Session() as sess:
print(sess.run(loss))
#结果是:[0.32656264 0.4643688 ]
word_prob_distribution = tf.constant([[0.0,0.0,1.0],[1.0,0.0,0.0]])
loss = tf.nn.softmax_cross_entropy_with_logits(labels = word_prob_distribution,logits = predict_logits)
with tf.Session() as sess:
print(sess.run(loss))
#结果是:[0.32656264 0.4643688 ]
由于softmax_cross_entropy_with_logits允许提供一个概率分布,因此在使用时有更大的自由度。
举个例子,一种叫label_smoothing的技巧将正确数据的概率设为一个比1.0略小的值,将错误的该概率设置为一个比0.0略大的值,
这样可以避免模型与数据过拟合,在某些时候可以提高训练效果
word_prob_smooth = tf.constant([[0.01, 0.01, 0.97], [0.98, 0.03, 0.01]])
loss = tf.nn.softmax_cross_entropy_with_logits(labels = word_prob_smooth,logits = predict_logits)
with tf.Session() as sess:
print(sess.run(loss))
#[0.37329704 0.5186562 ]
tf中softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits的更多相关文章
- tensorflow 中 softmax_cross_entropy_with_logits 与 sparse_softmax_cross_entropy_with_logits 的区别
http://stackoverflow.com/questions/37312421/tensorflow-whats-the-difference-between-sparse-softmax-c ...
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- Tf中的NCE-loss实现学习【转载】
转自:http://www.jianshu.com/p/fab82fa53e16 1.tf中的nce_loss的API def nce_loss(weights, biases, inputs, la ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...
- tf.nn.softmax_cross_entropy_with_logits()函数的使用方法
import tensorflow as tf labels = [[0.2,0.3,0.5], [0.1,0.6,0.3]]logits = [[2,0.5,1], [0.1,1,3]] a=tf. ...
- 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...
随机推荐
- 第五章 二叉树(e4)层次遍历
- 文件的概念以及VC里的一些文件操作API简介
文件的基本概念 所谓“文件”是指一组相关数据的有序集合. 这个数据集有一个名称,叫做文件名. 实际上在前面的各章中我们已经多次使用了文件,例如源程序文件.目标文件.可执行文件.库文件 (头文件)等.文 ...
- 前端知识--------HTML内容
HTML介绍 1.web服务本质 import socket sk = socket.socket() sk.bind(('127.o.o.1',8080)) sk.listen() while 1: ...
- Pocket Cube
Pocket Cube http://acm.hdu.edu.cn/showproblem.php?pid=5983 Time Limit: 2000/1000 MS (Java/Others) ...
- js td innerHTML
用value不好使,用innerHTML可以.JS:document.getElementById("aa").innerHTML="单元格"; body:&l ...
- js验证开头不为零的正整数
WST.zhengZhengShuIn = function (className){ var rex = /^[1-9]{1}[0-9]*$/;//正整数 $("."+class ...
- Judy Array API介绍
本文介绍https://code.google.com/p/judyarray/这个JudyArray实现的API. judy_open:新建一个JudyArray,并返回指向这个JudyArray的 ...
- Java数据结构和算法(二)顺序存储的树结构
Java数据结构和算法(二)顺序存储的树结构 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉树也可以用数组存储,可以和完 ...
- Android界面设计
从继承关系来看,所有组件继承自View.容器也是继承自View,它能容纳别的View. 所有容器继承自ViewGroup.包括 FrameLayout, LinearLayout, RelativeL ...
- maven web 项目 打入 jar 包 , 和编译入 java 文件到 web-inf 下
<outputDirectory>src\main\webapp\WEB-INF\classes</outputDirectory> 可以把 类文件编译到 web-inf 下 ...