最近做了一下hackerrank的20/20的比赛。平时都只能过2题,这周顺利地通过了四道题目竟然。当妄图冲击衬衫的时候,发现剩下三个题一点招数都没有,之后就跑去看了一下node.js了。。。

这次比赛的第四个题目是用cpp敲的,之前都是偷懒用python。

题目链接

Bike Racers

【题意描述】

在城市里有n个骑车的人,有m辆自行车,人可以同时沿着任意方向行走,每单位时间移动单位距离。要求出前k个到达自行车的人所花费的最小时间。人和自行车都用整数坐标表示。

1 <= N <= 250
1 <= M <= 250
1 <= K <= min(N,M)
0 <= xi,yi <= 107

【思路】

这一个题目,拿到之后没什么想法。然后感觉应该像是二分图的匹配问题。然后就去恶补了二分图,刷了三四道题目。第二天晚上回来,发现确实是二分图……那么大意就是求出这个图的一个子图,这个子图的二分图匹配数为k并且匹配的边中最大值最小。

那么这道题可以用类似克鲁斯卡尔最小生成树的问题来解决。将边从小到大进行排序,依次添加到图中。每次添加检测匹配数,当匹配数为k的时候,最后添加的那条边就是所求解。匹配当然是采用匈牙利算法进行。

算法确定,之后就是数据结构的问题:

如何保存图是本题的关键。

假设边以经按照权值排序完成。加边只修要O(1)的时间。

题目的总体复杂度为V*匈牙利算法的复杂度(V为边数)

匈牙利算法的复杂度为DFS的复杂度V*E(边数*点数)

通常的题目中,使用邻接矩阵来保存图,匈牙利算法就退化成为了E*E*E(V=E*E),于是总体复杂度就变成了E^5。必须会TLE。

世界就是如此美好,这个时候如果用边表来保存整个图,那么每次匈牙利算法的复杂度仍旧是V*E,总体复杂度就变为了(E*1+E*2+……+E*E*E)=1/2*(E^3)*(E+1)大约为E^4。看上去好很多了。

排序的优化:

为了让算法看上去更快一点,我又对排序这个地方产生了想法,如果排序的话,排序的复杂度为:

V*logV = E*E*log(E*E) = 2E*ElogE。在最坏的情况下,加入了最后一条边才能出结果,这个时候复杂度是不会有改善的。这里考虑平均情况,也就是说不需要每次都用到所有的边,这个时候使用小顶堆可以胜任!

以下是拙劣的代码。窃喜一下,还是觉得有长进的…

   1: #include <iostream>

   2: #include <cstring>

   3: #include <algorithm>

   4: #include <queue>

   5:  

   6: using namespace std;

   7:  

   8: struct Point {

   9:     long long x,y;

  10:     Point( long long _x, long long _y ) {

  11:         x = _x;

  12:         y = _y;

  13:     }

  14:     Point() {}

  15:     long long dis( Point p ) {

  16:         long long lx = x - p.x;

  17:         long long ly = y - p.y;

  18:         lx *= lx;

  19:         ly *= ly;

  20:         return lx+ly;

  21:     }

  22: };

  23:  

  24: struct Edge {

  25:     int y,next;

  26:     long long l;

  27:     Edge ( int _y, long long  _l, int _next ) {

  28:         y = _y;

  29:         next = _next;

  30:         l = _l;

  31:     }

  32:     Edge () {}

  33: };

  34:  

  35: struct E{

  36:     int x,y;

  37:     long long l;

  38:     E( int _x, int _y, long long _l ) {

  39:         x = _x;

  40:         y = _y;

  41:         l = _l;

  42:     }

  43:     E(){}

  44:     bool operator<( const E &e ) const {

  45:         return l > e.l;

  46:     }

  47: };

  48:  

  49: const int MAXSIZE = 255;

  50: const int NC = MAXSIZE*2;

  51:  

  52: priority_queue<E> Q;

  53:  

  54: int head[NC];

  55: Edge e[MAXSIZE*MAXSIZE];

  56: Point p[MAXSIZE];

  57: int visited[NC];

  58: int mark[NC];

  59:  

  60:  

  61: int e_len;

  62: int n,m,k;

  63: long long last;

  64:  

  65: void add( E ex ) {

  66:     e[e_len] = Edge(ex.y,ex.l,head[ex.x]);

  67:     head[ex.x] = e_len++;

  68: }

  69:  

  70: void input() {

  71:     while ( !Q.empty() ) {

  72:         Q.pop();

  73:     }

  74:     memset(e,-1,sizeof(e));

  75:     memset(head,-1,sizeof(head));

  76:     memset(p,0,sizeof(p));

  77:     e_len = 0;

  78:     cin>>n>>m>>k;

  79:     for ( int i = 0; i < n; i++ ) {

  80:         long long x,y;

  81:         cin>>x>>y;

  82:         p[i] = Point(x,y);

  83:     }

  84:     for ( int i = 0; i < m; i++ ) {

  85:         long long x,y;

  86:         cin>>x>>y;

  87:         Point t(x,y);

  88:         for ( int j = 0; j < n; j++ ) {

  89:             Q.push(E(j,MAXSIZE+i,t.dis(p[j])));

  90:         }

  91:     }

  92: }

  93:  

  94: int DFS( int x ) {

  95:     for ( int i = head[x]; i != -1; i = e[i].next ) {

  96:         int y = e[i].y;

  97:         if ( !visited[y] ) {

  98:             visited[y] = 1;

  99:             if ( ( -1 == mark[y] ) || ( DFS(mark[y]) ) ) {

 100:                 mark[y] = x;

 101:                 return 1;

 102:             }

 103:         }

 104:     }

 105:    return 0;

 106: }

 107:  

 108: bool test() {

 109:     memset(mark,-1,sizeof(mark));

 110:     int result = 0;

 111:     for ( int i = 0; i < n; i++ ) {

 112:         memset(visited,0,sizeof(visited));

 113:         result += DFS(i);

 114:     }

 115:     if ( result == k ) {

 116:         return true;

 117:     } else {

 118:         return false;

 119:     }

 120: }

 121:  

 122: void solve () {

 123:     for ( int i = 0; i < k; i++ ) {

 124:         E ex = Q.top();

 125:         Q.pop();

 126:         add(ex);

 127:         last = ex.l;

 128:     }

 129:     while ( !test() ) {

 130:         E ex = Q.top();

 131:         Q.pop();

 132:         add(ex);

 133:         last = ex.l;

 134:     }

 135:     cout<<last<<endl;

 136: }

 137:  

 138: int main() {

 139:     input();

 140:     solve();

 141: }

来更新一篇blog吧的更多相关文章

  1. 如何在一小时内更新100篇文章?-Evernote Sync插件介绍

    上一篇"手把手教你制作微信小程序,开源.免费.快速搞定",已经教会你如何快速制作一个小程序,但作为资讯类小程序,内容不可少,并且还需要及时更新. 但是,如果让你复制粘贴,可能还需要 ...

  2. 一篇blog带你了解java中的锁

    前言 最近在复习锁这一块,对java中的锁进行整理,本文介绍各种锁,希望给大家带来帮助. Java的锁 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人 ...

  3. 第一篇blog

    之前不用blog,但是在杭电oj,poj上刷题,总会自己总结题型和使用什么算法,算法模板,自己在笔记本上写,耗时费力,感觉用键盘敲得总结,分享,大家相互学习提高.有时遇到不会做的,或者总是在oj上跑的 ...

  4. 我的第一篇blog

    加入博客园两年多了,学习.从事编程也两年多了,一直是在网上找资料,都没有认真写写博客. 博客园里面好多功能都还不会用,今天起我也要在博客园写自己的blog了.感觉很高大上的样纸!!

  5. 空格哥的第一篇Blog

    首先十分感谢博客园在这里给我的平台,我在这里学习到了很多东西,响应的,我也想要在这里记录下自己的心路历程!在学习的过程中,希望博客园一直陪伴我,小弟在这里不胜感激!这是小弟的第一篇博客,很多东西都不是 ...

  6. 更新几篇之前写在公众号上的文章:线性可分时SVM理论推导;关联分析做捆绑销售和推荐;分词、去停用词和画词云

    适合阅读人群:有一定的数学基础. 这几篇文章是16年写的,之前发布在个人公众号上,公众号现已弃用.回过头来再看这几篇文章,发现写的过于稚嫩,思考也不全面,这说明我又进步了,但还是作为学习笔记记在这里了 ...

  7. 我的第一篇blog—— 一起来赛马呀

      作为一名大三的学生现在开始学习acm,或许太晚.感叹时光蹉跎....我的blog将以讲解的形式的发布,以专题的形式的形式介绍一些基本的知识和经典的题目.虽然感觉自己所剩时间无多,但也希望起到前人种 ...

  8. 人生的第一篇blog

    开始写博客了,人生第一篇博客啊,要写些什么呢?想想也没有什么头绪,随便写写吧. 这学期要使用代码管理工具了,要写团队项目了.一直以来都是自己一个人在默默编程,没有过合作经历.对于代码的管理也只是一直在 ...

  9. EC2的维护更新-总结篇及有效经验分享

    2014年10月11日 号,我们对不到10%的EC2实例的完毕了重新启动.来预防不论什么与Xen安全通报(XSA-108)相关的安全风险. 日之前都有义务遵守相关问题的保密要求.直到它被向公众公布. ...

随机推荐

  1. DependencyProperty

    <Window x:Class="DependencyPropertyDemo.MainWindow" xmlns="http://schemas.microsof ...

  2. MVC中的文件上传-小结

    web开发中,文件的上传是非常基本功能之一. 在asp.net中,通常做法是利用webservice 来接收文件请求,这样做的好处就是全站有了一个统一的文件上传接口,并且根据网站的实际情况,可以将we ...

  3. 运用预加载提升H5移动页面的用户体验

    原文地址:http://www.grycheng.com/?p=2188 在做h5移动页面,相信大家一定碰到过页面已经打开,但是里面的图片还未加载出来的情况,这种问题虽然不影响页面的功能,但是不利于用 ...

  4. Ubuntu 下 安装QQ 截图工具

    1.由于ubuntu下是没有dll动态链接库的,所以需要安装一个软件wine,有这个东西之后,以后在ubuntu下就可以运行exe文件了.(wine是一款优秀的Linux系统平台下的模拟器软件,用来将 ...

  5. C# Winform 开发框架

    C/S系统开发框架-企业版 V4.0 (Enterprise Edition) 简介: http://www.csframework.com/cs-framework-4.0.htm 视频下载: 百度 ...

  6. Python 学习之urllib模块---用于发送网络请求,获取数据

    1.urllib urllib是Python标准库的一部分,包含urllib.request,urllib.error,urllib.parse,urlli.robotparser四个子模块. (1) ...

  7. 把一个string串的所有小写字母转成大写字母的例子来看看看全局函数的使用

    今天写了一个小例子,把字符串里面的所有小写字母全部转换成大写字母http://blog.csdn.net/yasaken/article/details/7303903 1 #include &quo ...

  8. C# this.Invoke()的作用和用法(摘)

    Invoke()的作用是:在应用程序的主线程上执行指定的委托.一般应用:在辅助线程中修改UI线程( 主线程 )中对象的属性时,调用this.Invoke();   在多线程编程中,我们经常要在工作线程 ...

  9. oracle 自动增长

    在SQLSERVER和MYSQL里面自动增长字段直接设置就可以.在ORACLE里面就复杂多了.特别是我这样的初学者,不过网络是最好的老师,看了很多相关介绍,本人使用的是使用触发器.具体如下: 首先要创 ...

  10. Elasticsearch客户端大全 http://www.searchtech.pro/elasticsearch-clients

    Elasticsearch有各种语言的客户端,下面一一列出来: Perl ElasticSearch.pm: Perl客户端 Python pyes: Python客户端pyelasticsearch ...