Sum It Up
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6682   Accepted: 3475

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25
#include<stdio.h>
#include<string.h>
#define MAX 1100
int n,m,k,ok;
int a[MAX],b[MAX];
void dfs(int pos,int tot,int k)
{
int i,j;
if(tot==n)
{
ok=1;
for(j=0;j<k;j++)
{
if(!j)
printf("%d",b[j]);
else
printf("+%d",b[j]);
}
printf("\n");
return ;
}
for(i=pos;i<m;i++)
{
b[k]=a[i];
dfs(i+1,tot+a[i],k+1);
while(a[i]==a[i+1])//去重
++i;
}
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&m),n|m)
{
for(i=0;i<m;i++)
scanf("%d",&a[i]);
k=0;
ok=0;
printf("Sums of %d:\n",n);
dfs(0,0,0);
if(!ok)
printf("NONE\n");
}
return 0;
}

  

poj 1564 Sum It Up【dfs+去重】的更多相关文章

  1. POJ 1564 Sum It Up (DFS+剪枝)

                                                                                                       ...

  2. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  5. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  6. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. POJ 1564 经典dfs

    1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #in ...

  9. (深搜)Sum It Up -- poj --1564

    链接: http://poj.org/problem?id=1564 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88230#probl ...

随机推荐

  1. CSS 伪元素

    CSS伪元素是用来添加一些选择器的特殊效果. 语法 伪元素的语法: selector:pseudo-element {property:value;} CSS类也可以使用伪元素: selector.c ...

  2. Javascript面试题浅析

    分享几道JavaScript相关的面试题. 字符串反转 这这里提供了两种解题思路.如果各位读者还有其他的思路,可以分享交流! 第一方法: function reverse(str){ var sp = ...

  3. WinpCap 使用线程发数,明明发了,返回值0是OK的啊,怎么抓包看不到,难道不支持多线程。。。

    if (!m_adapterHandle){    return false;}int rst = pcap_sendpacket((pcap_t*)m_adapterHandle,data ,dat ...

  4. Mediator 模式

    在面向对象系统的设计和开发过程中,对象之间的交互和通信是最为常见的情况,因为对象间的交互本身就是一种通信.在系统比较小的时候,可能对象间的通信不是很多.对象也比较少,我们可以直接硬编码到各个对象的方法 ...

  5. Fatal error: Uncaught SoapFault exception

    Warning: SoapClient::SoapClient() expects parameter 2 to be array, boolean given in  login\login.php ...

  6. tupian

     http://www.iconfont.cn/https://icons8.com/http://ico.58pic.com/http://www.easyicon.net/ 

  7. getimagesize函数介绍

    getimagesize(); 返回结果说明 索引 0 给出的是图像宽度的像素值 索引 1 给出的是图像高度的像素值 索引 2 给出的是图像的类型,返回的是数字,其中1 = GIF,2 = JPG,3 ...

  8. iOS: 学习笔记, Swift与Objective-C混用总结

    Swift与Objective-C交互总结 在Swift中使用Objective-C(简单) 在创建OjbC文件时, XCode会提示创建XXX-Bridging-Header.h文件, 创建之 在创 ...

  9. 无Xaml的WPF展示

    我们创建一个wpf应用程序,我们把里面的xaml文件全部删除,添加一个新类: 如下图: 然后我们cs文件中的代码: using System; using System.Collections.Gen ...

  10. Chaperon简介

    Chaperon是一个可以把有结构的Text转换成XML.它包括一个强大的LALR(1)解析器来解析Text和一个可以用来创建XML文档的Tree builder. http://chaperon.s ...